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Problem Statement 

In this study we will demonstrate that it is possible to predict a known turbine failure 
using historical data. On a particular turbine, a blade tore off and completely damaged 
the turbine, requiring extensive and expensive repair and replacement. After the event, 
the question was raised whether this failure could have been predicted and localized to 
a specific place inside the turbine. 

The specific turbine in question has over 80 measurements on it that were considered 
worthwhile to monitor. Most of these were vibrations, but there were also some 
temperatures, pressures and electrical values. A history of six months was deemed 
long enough, and the frequency of measurement depended upon each individual 
measurement point – some were measured several times per second, others only once 
every few hours. In fact, the data historian stores a new value in its database only if the 
new value differs from the last stored value by a predefined parameter. In this way, the 
history matrix contained a realistic picture of an actual turbine instrumented with 
sensors as it is normally done in the industry. No enhancements were made to the 
turbine, its instrumentation or the data itself. 

During the time leading up to the blade tear and until immediately before it, no sign of 
the imminent blade tear could be detected by any analysis run by the plant engineers 
either before or after the blade tear was known. Thus, it was concluded that the tear 
was a spontaneous and thus an unpredictable event. 



	

 

Predicting an Event 

The data that we were provided to create a model was deliberately cut off two days 
before the known (historically occurring) blade tear on that turbine in order for us to 
find out whether or not the event could have been predicted. 

Initially, the machine learning algorithm was provided with no data. Then the points 
measured were presented to the algorithm one by one, starting with the first measured 
point. Slowly, the model learned more and more about the system, the predictions 
gradually became more accurate and the system was capable of making a prediction for 
longer and longer times into the future. Naturally, the time for which the algorithm can 
make predictions increases with additional data and experience. Once the last 
measured point was presented to the algorithm, it produced a predication valid for the 
following two days of real time. The result may be seen in figure 1. The actual blade tear 
that occurred 46 hours from the end of the available data was predicted to occur 48 into 
the future. Thus, this event is predictable two days in advance. 

Turbine Prediction 

Figure 1: Here we see the actual 
measurement (spiky curve) versus the 
model output (smooth line) over a little 
history (left of the vertical line) and for 
the future three days (right of the 
vertical line. We observe a close 
correspondence between the 
measurement and the model. 
Particularly the event, the sharp drop, 
is correctly predicted two days in 
advance. 

 

 

 

It is, however, not possible to predict this event any earlier. This is because the model 
must "see" some change in the system, i.e. the failure mode that eventually leads to the 
failure must be operating and visible in the data. In general, failure modes that are 
slower can be predicted longer in advance. 

It must be emphasized here that the model can only predict "an event," such as the 
drop of a measurement. It cannot label this event with the words "blade tear." The 
identification of an event as a certain type of event is altogether another matter. It is, in 
principle, possible via the same sort of methods but would require many examples of 



	

 

blade tears and this is a practical difficulty. Thus, the model is capable of giving a 
specific time when the turbine will suffer a major defect; the nature of the defect must, 
however, be discovered by manual search on the physical turbine. 

But to be truly helpful, we must be able to locate the damage within the large structure 
of the turbine, so that maintenance personnel will not spend days looking for the 
proverbial needle in the haystack. 

Localizing the predicted event 

Therefore, fault detection and localization was now done by performing an advanced 
data-mining methodology (singular spectrum analysis) that tracks frequency 
distributions of signals over the history and can deduce qualitative changes.  

Considering the 80 measurement points, we were able to show that only four of these 
measurements contained an actual qualitative shift in their history (the others stayed 
qualitatively the same over the whole history) and that two of these four went through 
such a shift several days before the other two. Thus, we were able to determine which 
two out of 80 locations in the turbine were the root cause for the event that was to 
occur within two days. See figure 2 for an illustration. 

In this figure, we graph the abnormality as measured by singular spectrum analysis 
over time for each measurement. If a system is in some condition for a long time, we 
may label this condition to be "normal." If this condition changes, we can call it 
"abnormal." When the abnormality persists, however, this new condition eventually 
becomes normal by virtue of the definition of normality as being that condition that has 
been current for a long time. When a system makes a qualitative transformation from 
one persistent state to another, we would therefore expect any reasonable abnormality 
measure to first increase (upon the change) and then decrease again (as the new state 
becomes increasingly normal). 

What we observe from figure 2 is that two of the measurements become abnormal 
early in time and two others follow suit. When we asked which time-series these were, 
we found that the first two were the radial and axial vibrations of one bearing, and the 
second two were the same vibrations of the neighboring bearing. Of course, we cannot 
be certain that there exists a physical cause-effect relationship between these three 
events: (1) first bearing changing its vibration behavior, (2) second bearing changing its 
vibration behavior, and (3) blade tear. The available data strongly suggests this link 
however. Indeed, the blade that tore off was very close to the first bearing that changed 
its vibration behavior. Thus we were successful in localizing the fault within the large 
turbine. 



	

 

Figure 2: We compute deviations 
from normal being tracked over a 
window of about four days length. So 
we observe that two sensors start 
behaving abnormally and two days 
later, two other sensors behave 
abnormally. About 3.5 days after the 
start of the abnormal behavior, this 
new behavior has become normal, so 
the deviation from normal is seen to 
reduce again. Therefore, we observe 
a qualitative change in the 
performance of these four points. 

 

Conclusion 

It is possible to reliably and accurately predict a failure on a steam turbine two days in 
advance. Furthermore, it is possible to locate the cause of this event within the turbine 
so that the location covered by the sensor that measures the anomaly can be focused 
on by the maintenance personnel. The combination of these two results, allows 
preventative maintenance on a turbine to be performed in a real industrial setting 
saving the operator a great expense. 

 


