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A chemical plant’s efficiency and profitability can be optimized using mathematical 
modeling. The optimization tells plant operators which set-points should be changed to 
obtain the maximum profitability. This method requires no engineering changes to be 
made to the plant. We show that a profitability increase of approximately 6% was 
possible in a specific chemical plant producing silanes, with an overall yield increase of 
5.1% and an increase of 2.9% for the most profitable end product. 

Introduction 

Like other industries, the chemical industry constantly aims to enhance the profitability 
of its plants by increasing the production yield. Such increase may be achieved either via 
engineering changes, which are quite cost intensive, or via operational changes. 
Operational changes can increase yield and profitability without actually changing the 
equipment and the processes of the plant. The question is: What operational changes 
are needed to increase yield, or better still, to optimize yield under the given 
circumstances? Here, we compute the action required to achieve optimal yield at any 
time using machine learning. This method develops a mathematical model of the 
process based purely on historical data and is therefore very fast and economical to 
employ. 

 

 



	

 

The Problem 

While some smaller processes are automated using various intricate technologies, the 
overall processes are most often controlled by human operators. With operators working 
in shifts, no single operator controls the plant over the long-term but usually only for the 
time of his or her shift. It can be observed that the efficiency of the plant oscillates in a 
rough eight hour pattern showing that human decision making has a significant 
influence on the efficiency of the plant. Not only are some operators better than others, 
but it is also quite difficult to transfer the know-how and experience of the best 
operators to those operators who are less experienced and knowledgeable. Even where 
regular knowledge transfer systems are in place, this transfer may work to a certain 
extent, but usually not to a maximum effect. Hence, there are good operators and less 
than good operators. 

Furthermore, the plant usually outputs several thousand measurements at high 
cadence. An operator cannot possibly keep track of even the most important of these at 
all times. The degree of complexity is most often too great for the human mind to handle 
and as a consequence, suboptimal decisions are taken, even by the best operators. 

The challenge, then, is to optimize the efficiency of the plant by systematizing the way 
the plant is operated, depending less on the intuition of the operators and more on hard 
evidence. How is this done? 

The basis for the optimization model is the historical data from the data historian that 
keeps track of the numerical values of different variables. The knowledge and experience 
of the operators are thus plainly visible in the data. If the history is long and detailed 
enough, this information is effectively all one needs to know about the plant. A human 
being could not use this information to learn about the plant because of the sheer 
volume of data. Machine learning is designed to extract the underlying pattern in a large 
set of numerical data and produce a simple equation – one we may use to make optimal 
decisions. 

The purpose of the chemical plant to be examined here is to input certain chemical com-
pounds (such as silicon and hydrogen compounds) and to subject them to the Müller-
Rochow Synthesis (see figure 1) in order to obtain Di methyl chloride silanes  ((CH3)SiCl2) 
and Tri methyl chloride silanes ((CH3)SiCl3), hereafter referred to as Di and Tri. 

 

 

 

 



	

 

Figure 1: Sketch for the Müller-Rochow-
Synthesis plant including: (A) Compressor, (B) 
Vaporizer, (C) Fluidized bed reactor, (D) Cooling 
jacket, (E) Cyclone, (F) Silicon / Copper (catalyst), 
(G) Methyl chloride, (H) Condenser, (I) Raw 
Silane, (J) To the distillation, (K) Silicon / Copper 
dust, (L) Heat exchanger, (M) Remainder, and (N) 
Back-flow methyl chloride. 

 

 

 

The Solution 

The optimum of profitability is achieved with a maximum of yield for a minimum of raw 
materials. The selectivity of particular end products is influenced by the amount of 
various catalyst and promoter materials added as well as diverse process variables such 
as temperatures and pressures. All these must be regulated to the best possible 
operation considering a number of features that the operator cannot control at all, such 
as the temperature of the environment or the quality of the raw materials. 

To simplify matters, we shall view the entire plant as a black box. Raw materials go into 
the box and product comes out of the box. The box has some gauges with which we can 
sense what is going on inside the box, and it also has some dials with which we can 
control what goes on inside. Based on this information, we will want to determine the 
relationship of input to output given the restriction of the gauges (which we cannot 
control) and the dials (which we can control). The process of discovering this relationship 
is machine learning, which we will not treat here. The important thing to know is that 
machine learning is done automatically without the manual addition of human 
knowledge – it operates purely on the historical data of the plant. 

The result is a set of formulae that describe what comes out of the plant for any 
particular input, dial setting and gauge measurement. This equation may then be turned 
around so that we can ask: For the current gauge measurement, which we must take as 
given since we cannot control it, the question is: What is the optimal dial setting and 
input of raw material? The term “optimal” is defined here as the highest profitability. The 
answer to that question is a concrete action that must be implemented by the operator 
to achieve that optimum. 

 

 



	

 

Results 

The results of the optimization were obtained in an experimental period lasting three 
months and encompassing three reactors. During the evaluation period, the operator 
implemented only the actions deemed useful by him or her. During the usage period, the 
operator implemented all actions computed by the model. During the reference period, 
the operator did not use the optimization model at all. The results for all periods are 
plotted in figure 2.  

Figure 2: The probability distribution functions for selectivity and yield of Di for periods in which the 
optimization was not used (reference period: red dotted line), used whenever deemed useful (blue dashed 
line) and used fully (green solid line). 

It is apparent, from these images alone, that we increase the selectivity and the yield 
with more use of the optimization and that we decrease the variance (i.e. the spreading 
out or distribution of the results) of both selectivity and yield as well. Decreasing the 
variance is desirable because it yields a more stable reaction over the long term and thus 
produces its output more uniformly over time. Numerically, the results are displayed in 
table 1 below.  

 Selectivity (%) Yield (%) 
Reference 79.8 ± 3.6 86.6 ± 4.2 
Evaluation 79.9 ± 2.5 89.7 ± 4.3 
Usage 82.7 ± 1.9 91.7 ± 3.2 

Table 1: For both selectivity and yield, we compute the mean ± the standard deviation for all three periods. 

The results show that the selectivity can be increased by approximately 2.9% and the 
yield by approximately 5.1% absolute by comparing the usage with the reference period. 
Together these two factors yield an increase in profitability of approximately 6% in the 
plant.  

It is to be emphasized that this profitability increase of 6% was made possible through a 
change of operator behavior only (as assisted by the computational optimization) and no 
capital expenditures were necessary. 



	

 

The practical setup of this optimization took approximately two days of time for the 
operating personnel. The computation time for the computer to construct the necessary 
functions was about one month. The computer interfaces for input and output of the 
data are standardized in the industry and can thus be applied readily without delay.  

Thus, within about one month, the model can be fully operational without occupying the 
operators for much time. The approach is thus practicable in a real industrial plant. 
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Mathematics of the Optimization 

Any measurement made in the plant falls into one of three categories: The operator can 
directly modify the value by changing a set-point, cannot modify the value at all (because 
the value is set by the world outside the plant) or can indirectly modify it by changing 
some set-point (e.g. vibrations can be increased by increasing the pressure). We call 
those controllable, uncontrollable and semi-controllable measurements. This is similar 
to the distinction that mathematicians make between variables and parameters. Both 
are changing quantities but parameters are fixed by the world and variables can be 
changed by the mathematician. 

The goal, in this case profit, is a function of both controllable and semi-controllable 
values as variables and the uncontrollable values as parameters, i.e. g(c, s; u). 

What we want to compute is the set of controllable values that yields the largest 
possible profit given that we cannot modify the uncontrollable values. Thus, we are 
looking for the point that has highest profit among all those points that have the same 
uncontrollable values as the present point. That is why, we use machine learning to get a 
model of the plant. This means a set of formulas that compute the semi-controllable 
values as a function of the controllable values as variables and the uncontrollable values 
as parameters, i.e. s = f(c; u). 

Machine learning [1] has the goal of determining functions from data by using 
particularly flexible functional templates as a basis and computing the best possible 
values for the parameters of this template such that the function arrived at fits the data 
in the best possible way. Particular emphasis must be paid to the fact that the process 
depends upon its own history. A special class of methods, known as recurrent neural 
networks, is particularly good at capturing this time-dependence and so they are used 
here [2]. It would be beyond the scope of this paper to describe how these are arrived at. 

We may now substitute the model into the goal to get g(c, f(c; u); u). The major change 
here is that we were able to get rid of all the measurements in the plant that are not 
directly accessible to us as actions or boundary conditions. As the uncontrollable must 
not change, we may now use optimization techniques to find the set of controllable 
values that maximize the goal, i.e. g(c’, f(c’; u); u). We use simulated annealing as this is a 
technique that is able to find the global optimum in very complex situations [6,7]. 

The difference between the optimal and current controllable values (c’ - c) is then the 
action that the operator must implement in order to achieve the best possible profit. 
This action is a time-dependent action that may change from moment to moment. As 
such, it is frequently not possible to implement this action in a single step. 

 



	

 

Figure 3 displays this problem graphically using real data taken from the current 
process. The two axes on the horizontal plane indicate two controllable variables and the 
vertical axis displays the goal function. We can easily see that the change in a 
controllable variable can produce a dramatic change in the goal. The two paths displayed 
represent the reactions to the current situation by a human operator (the upper path) 
and the computer program (the lower path). They initially begin on the left at the current 
operational point. Because of their differing operational philosophies, the paths deviate 
and eventually arrive at different final states. This is a practical example of the human 
operator making decisions that he believes are best but that are, in fact, not the best 
possible. The computed path is better than the human path by about 5% in the profit 
goal. 

Done properly, both steps can be automated such that the computer continuously keeps 
track of the optimum point and alerts the user to necessary actions in order to keep the 
physical process at the computed optimum. The methods of machine learning work in 
such as way as to update the model with every new measurement. Therefore, the model 
validates itself over time as it always checks its performance against experimental 
verification and alters itself if necessary. Even if changes are made to the process, the 
model will learn them autonomously after some time has passed. 

 

Figure 3: The dependency of the goal on two controllable variables. The upper path displays the reaction of 
a human operator and the lower path displays the reaction of the optimization system. 



	

 

Specific Design 

For the specific current application, the molecules are produced in three separate 
reactors and then brought together for shipment. We are to optimize the global 
performance of the plant but are able to make changes for each reactor separately. We 
now outline the variables that were under our influence. These should be understood as 
being per reactor. 

In this case, the controllable variables are: Temperature of the reactor, amount of raw 
material to the jet mill, steam pressure to the jet mill, amount of Methylene Chloride 
(MeCl) to the reactor, pressure of the reactor and others relating to the processes before 
the synthesis itself. 

The uncontrollable variables are: X-ray fluorescence spectroscopy measurements on 17 
different elements. The semi-controllable variables are the other variables that are 
measured in the system. In total, there were almost 1000 variables measured at 
different cadences. 

The goal function is the financial gain of the reaction. We compute the input raw 
materials and the output end products. Each amount is multiplied with the currently 
relevant financial cost or revenue.  

 


