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Abstract

We introduce the braid groups in their connection to knot theory and investigate several of their
properties. Based on term rewriting systems, which we review, we find new solutions to the word
and conjugacy problems in the braid groups. A similar problem asks for the minimal length word
for an equivalence class in a given braid group which we prove to be NP-complete (after a review of
this concept) and present a new algorithm for it. As this algorithm takes an exponentially increasing
amount of time, we construct an algebraic approximation algorithm which we find to work well.
We consider several methods of approximating the minimal word via computer simulation of the
braid strings moving under the influence of certain forces. Using the theory of tangles which we
also review, we construct a new notation for knots which is usable by a computer. From this
notation, we construct an efficient algorithm to find the braid or plat whose closure is ambient
isotopic to any given knot. Finally, we apply the computer software developed for these problems
to the solar coronal heating problem by simulating magnetic flux tubes. We also present a number
of incidental results that were found along the way of researching these problems.
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This is dedicated to all those who, in the face of adversity,
throw themselves headlong into the battlefields

and fight until they achieve victory or die trying.

”It is time I focused on my problem. Who does not have a problem? — Everybody has one,
and indeed several. Each problem has its rank; the main problem moves to the center of one’s
life, displacing the other problems. It incessantly haunts us like a shadow, casting gloom on our
minds. It is present even when we awaken at night; it pounces on us like an animal. ... When I
stir my morning coffee and watch the swirling of the streaks, I am observing the law that moves
the universe — in the whirling of the spiral nebulae, in the eddying of the galaxies. ... But what
does it matter? Whether the universe whirls or crumbles — the problem remains behind it. ...
The problem is indivisible; man is alone. Ultimately, one cannot rely on society. Although society
usually wreaks harm, indeed often havoc, it can also help, although not more than a good physician
— up to the inevitable limit where his skill fails. ... My time is limited; but anyone can spend a
month retreating into the forest or the desert. There, he can describe — or better: circumscribe
his problem; it is then defined, though not solved.”

Ernst Jünger in Aladdin’s Problem.

Algorithmic Problems in the Braid Groups
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Notation

The most important symbols used throughout the thesis are explained in the table below.

Symbol Meaning
[A,B] AB −BA = 0
σi generator of braid group, single braid crossing
Bn braid group of n strings
≈ equivalence in a group
≈C conjugate in a group
≈M Markov equivalence in braid group
L(A) number of Artin generators in braid A; the length of braid A
A (canonical) closure of braid A
π1(K) fundamental group of complement of knot K
p(K) peripheral group system of complement of knot K
ai,j = σiσi+1 · · ·σj for i ≤ j ascending braid word
di,j = σiσi−1 · · ·σj for j ≤ i descending braid word
∆n = a1,n−1a1,n−2 · · · a1,1 fundamental braid, see ∆2

n

∆2
n generator of the centre of Bn, see ∆n
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Preface

This thesis considers several problems in the theory of braids. Braid theory is a branch of knot
theory which is contained within topology. During the discussion of the research, we make use of
braid, knot, group and tangle theories as well as techniques from term rewriting systems and NP-
completeness which come from computer science, and topology. Other than a basic knowledge of
topology and group theory, no further knowledge of any other branch of mathematics or computer
science is necessary in order to read this thesis as we review all these fields to the extent necessary
for our purposes.
We begin in chapter 1 by reviewing braid and knot theory. In section 2.1, we use group theory

and algebra to deduce certain properties of the braid groups. We proceed in section 2.2 to review
term rewriting systems and use them in section 2.3 to solve the word and conjugacy problems in
the braid groups.
We state the minimum word problem for braids in chapter 3. In section 3.2, we review the

theory of NP-completeness and use it to show that the minimum word problem is NP-complete in
section 3.3. We find, in section 3.4, an algorithm to solve the problem which runs in exponential
time.
The minimum word problem may be approached by simulating braids as elastic strings. This

approach works well in practice. In section 4.2, we discuss how to generate a random braid, embed
it in space and retrieve a braid word from a set of strings. In sections 4.3 and 4.4, we present
three forces that we will use in the simulation. Section 4.5 presents an efficient algebraic heuristic
algorithm to solve the problem. The properties of the forces and data to compare them in both
efficacy and efficiency is in section 4.6. The simulation contained in chapter 4 was published in a
slightly different form in [10].
We review tangle theory in section 5.1. Section 5.2 presents a new notation for knots and gives

a few basic properties of it. We solve the problem of turning a knot into a braid or plat in section
5.3 and give translation algorithms between our new notation and existing computer notations in
section 5.4.
Apart from the crossing number minimizing force in section 4.3, which is the work of Prof. M

A Berger, and the curvature elastic force in section 4.4.2, which is the work of Dr. R Prandi, the
contents of the thesis are the author’s work except where explicitly cited in the references. For
reasons of space we provide the proof of a result only when it or the result is new and refer the
reader to the literature if the proof exists therein.
In the investigations described in the above chapters, computer assistance was frequently nec-

essary and for this purpose a program called BraidLink was written in C++ for Microsoft Win-
dows. Many of the algorithms in this thesis are implemented in BraidLink but the functionality
of BraidLink goes far beyond them. The program may be obtained from the author, for further
information and the manual see http://www.knot-theory.org.
For each entry in the bibliography, we provide a list of page numbers on which that particular

work was cited. After the bibliography, we provide an index to the technical terms used in the
thesis. Page numbers in bold indicate that the term is defined on that page whereas a normal page
number simply means that the term is used in an important way on that page.



Chapter 1

Introduction to Braid and Knot
Theory

1.1 Knot Theory

Everyone has encountered knots. We use knots to tie our shoelaces, fasten our washing lines and
secure ourselves from falling during climbing. Knot theory studies the topology of knots such
as these with the only additional requirement that after they are tied, the ends must be glued
together never again to be undone. The inherent freedom of topology means that we are allowed
to do anything to the knot - stretch, bend, twist and distort it in any way - except cut or glue the
string at any point. The modern view of thinking of a knot as a tied piece of string with connected
ends is much simpler than the original conception:
”By a knot of n crossings, I understand a reticulation of any number of meshes of two or more

edges, whose summits, all tessaraces (ακη), are each a single crossing, as when you cross your
forefingers straight or slightly curved, so as not to link them, and such meshes that every thread
is either seen, when the projection of the knot with its n crossings and no more is drawn in double
lines, or conceived by the reader of its course when drawn in single line, to pass alternately under
and over the threads to which it comes at successive crossings.” [93]
The historical roots of knot theory begin in the middle of the nineteenth century when Lord

Kelvin (at that time still William Thompson) had the idea that an atomic theory could be created
on the basis of vortex knots in the (then accepted) luminiferous ether. The fluid-like ether was
thought to be the all pervading medium in which light travels. Different elements of matter were
thought to correspond to topologically distinct knots in this model. Thompson asked his friend
Peter Guthrie Tait to study knots and to draw up a list of topologically distinct knots. This was the
impetus for Tait to create knot theory. When Kelvin approached Tait about constructing a knot
table, they envisioned a research programme which was to start by classifying knots (in form of a
table), mapping this table to the spectrum of observed elements via further experiments and finally
to produce a theory of everything. The 1887 experiment of Michelson and Morley showed that
the luminiferous ether does not exist and thus the vortex atom theory was abandoned. However
knot theory continued as a mathematical discipline. Tait was primarily concerned with creating a
table of topologically distinct knots in order of increasing complexity. The measure of complexity
used was the minimum number of crossings over all two dimensional projections of the knot. Tait
succeeded in creating a remarkably accurate table of prime knots up to and including ten crossings.
Figure 1.1 gives three examples of knots. The leftmost knot is called the unknot and was

originally not regarded as a knot at all. The unknot is a very special case and arguably the most
important single knot. The other two are the Hopf and Whitehead links respectively which have
two closed loops of string each. The term link is usually reserved for a knot with more than one
component. The arrows on the diagrams supply an orientation to the knot. The orientation is
important because there exist knots for which altering the orientation can change the topology.
Many times however, no orientation is specified.
The modern definition of a knot K is an embedding of n copies of S1 into S3, the three-sphere

(thus we use the term knot as inclusive of links). Whenever a new mathematical object is defined,
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Figure 1.1: The unknot, Hopf link and the Whitehead link. These knots are oriented as indicated by
the arrows. Knots do not have to be oriented but every knot is orientable and different orientations
may not be deformable into each other without cutting or gluing, i.e. they may be topologically
distinct.

the question arises how equality is to be defined. In knot theory this is far from obvious and there
were several contending views very early on. Tait [142] viewed knots based on string and allowed
axial twisting of the rope while Kirkman [93] viewed knots based on ribbons and did not allow
axial twists. This lead to different tables of distinct knot types and created some confusion.
The definition of equivalence is based on the topological concept of ambient isotopy and is

essentially the same definition that Tait used. Two embeddings k1, k2 : X → Y are ambient
isotopic, denoted by ≈, if there is a level preserving isotopy H such that

H : Y × I → Y × I,H(y, t) = (ht(y), t) (1.1)

where k2 = h1k1, h0 = idY and I = [0, 1]. H is called the ambient isotopy. This means that if
we can take one knot and distort into another smoothly without any discontinuities, then they are
both the same knot. If we must go through some discontinuities, i.e. if we must cut or glue, then
the two are not the same knot. From this definition, it is clear that the unknot and the Hopf link
in figure 1.1 are not the same knot. The reason is that the Hopf link has two components which
could be reached from the unknot’s single component only by cutting and gluing. This process of
cutting and gluing is commonly referred to as surgery.
Having defined what it means for a knot to be equal to another, we ask for a method to discover

if the equality holds between any two given knots. This is the classification problem for knot theory
and no satisfactory answer has yet been given.

1.1.1 The Knot Classification Problem

(0)

(1)

(2)

(3)

or

Figure 1.2: The Reidemeister moves.

The overriding problem in constructing a knot table is the difficulty of determining whether
two knot diagrams are topologically distinct or not. It is possible to construct all possible knot
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diagrams up to a given number of crossings using an (essentially) algebraic method [143] but
distinguishing these is the real problem. This enumeration method has been refined [58] and used
to tabulate knots based on topological invariants (see below) up to and including 17 crossings
[69] (for an excellent review on the history of tabulation and how it is done using a computer
see [147]). Therefore a practical method for comparing two given knot diagrams would make it
possible to construct a complete knot table up to a certain number of crossings, i.e. such a method
would classify knots. After Tait, Reidemeister [130] showed that two knot diagrams are equivalent
if and only if they can be transformed into each other via a set of four moves which are called
Reidemeister moves, see figure 1.2. While this turns the problem into a combinatorial one, it is
often necessary to further complicate a diagram in order to fully simplify it later. Making this
transformation is not readily amenable to algorithmic manipulation. Thus Reidemeister’s moves
do not present a practical method to distinguish knots. They make it easy however, to prove the
invariance of other properties of knots. If one can show that a particular function f (K) calculated
from a knot K is invariant under all the Reidemeister moves, then f (K) is a topological invariant
of knots. This means that if K1 ≈ K2, then f (K1) = f (K2). Many such functions have been
found but it can be shown that for most known functions it does not follow that if f (K1) = f (K2),
then K1 ≈ K2. In that sense, most topological invariants are incomplete. An invariant is called
complete when K1 ≈ K2 if and only if f (K1) = f (K2). It is the holy grail of knot theory to find
a (readily computable) complete invariant. It is not known whether such an invariant actually
exists. As we will discuss below, the complement (R3 with the knot removed) of the knot is a
complete invariant but distinguishing these, while possible, is such a time consuming affair, that
this method of classifying knots is not practical [77].
We can define a knot sum K1#K2 between two knots K1 and K2 by cutting both knots at

one arbitrary point and splicing the ends together in such a way that the orientations, if any, are
compatible. It can be shown that this sum is independent of the choice of the points and thus
dependent only upon which components of K1 and K2 are cut [39]. It can also be shown that
there is no inverse to this sum, that is, in general, there is no knot K−1 for any knot K such that
K#K−1 ≈ U where U is the unknot of as many components as K has [39]. Therefore, the knot
isotopy problem does not reduce to recognizing the unknot, which is a fundamental complication
of the problem. A knot is called prime if it can not be represented as the sum of two non-trivial
knots, it is called composite otherwise.

1.1.2 Topological Invariants

The topological invariants of knots fall into a number of categories. A trivial invariant is the number
of components but since there are a large number of obviously distinct knots for each value, this
is not a very strong invariant even though it is easily computable. Amongst the simplest to state
are the invariants which are defined as the minimum of quantities over all possible diagrams of a
knot. Since there are an infinite number of diagrams for each knot, these invariants are difficult
to determine and for many of them, there exists no general method. Examples of this are the
minimum crossing number, bridge number and braid index [116]. Another important category
is formed by the polynomial invariants. A number of polynomials have been defined which are
topological invariants of a knot. The polynomial is generally calculated via a topological form of
recursion relation, called a ”skein relation,” which we will not go into [91]. The Jones polynomial
and its generalization, the Homfly polynomial, are very important in several applications of knot
theory as well as knot theory itself. They are very powerful invariants but there are still an
infinite number of knots with identical polynomials. The fundamental point to note is that, while
polynomial invariants are among the most powerful knot invariants, the amount of computing time
required to determine them increases exponentially with the number of crossings in the diagram
of the knot. For a review on knot polynomials, see [99].
The fact that it is unknown whether there exist non-trivial knots for which the Jones polynomial

is equal to one (the value for the unknot), shows that these invariants are not fully understood at
present. Recognizing the unknot is a subproblem of the knot classification problem and if the above
question is negatively resolved, then the Jones polynomial would provide the best known unknot
detection mechanism (from a computational point of view) [21]. There are two algorithms which
can distinguish the unknot: One due to Haken [74] [75] which was the precursor to his classification
of 3-manifolds and one due to Birman and Hirsch [21] which makes use of closed braids. While the
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14 Introduction to Braid and Knot Theory

former is clearly exponential in execution time, the later has not been analyzed for complexity but
appears to be exponential. It has not been analyzed what the complexity of the knot classification
problem in general is but it would seem to be easier to distinguish a knot from the unknot than
to distinguish two arbitrary knots.

1.1.3 The Complement of the Knot

We define a knot K as an embedding of n copies of S1 into S3, the three-sphere. Consider the knot
K and surround it with a tubular neighborhood V (K), then the manifold C(K) = R3 − V (K) will
be called the complement of K. It can be shown that for any knots K1 and K2, K1 ≈ K2 if and
only if there exists orientation preserving homeomorphism H : C (K1) → C (K2) [39]. Thus the
knot complement is a complete invariant of the knot.

P0

P1

P2

P3

Figure 1.3: The standard 3-simplex or tetrahedron.

C(K) is clearly a 3-manifold and it can thus be distinguished (or otherwise) from other 3-
manifolds, in particular other knot complements C(K ′), by Haken’s classification of 3-manifolds.
We briefly present the idea of the method but refer the reader to [77] for a pedagogical treatment.
First, a triangulation must be found on R3. A triangulation for a 3-manifold essentially consists of
filling the manifold with non-overlapping tetrahedra in such a way that any point in the manifold
is in a tetrahedron, see figure 1.3. Any surface in the manifold will now intersect some tetrahedra.
These intersections will be triangles (2-simplices) or squares, see figure 1.3. Since the tetrahedra do
not overlap but fill all of the manifold, the number of intersections of a surface with adjacent sides
of tetrahedra must be equal. This requirement gives a set of equations describing the surface in the
manifold. Since the triangulation is not unique, neither is the set of equations. Comparing two knot
complements has been a topological problem but this construction turned it into a combinatorial
one. If we can compare the set of equations from two surfaces (thickened knot neighborhoods
of K and K ′), then we can distinguish the knots. This can be done [77] but the time taken is
exponential in the number of crossings of the knot, so exponential that the algorithm can not be
used to practically distinguish knots even of small crossing number.

1.1.4 Peripheral Group System

The complement of a knot is uniquely specified (up to isomorphism) by its peripheral group system
which consists of the fundamental group and a few subgroups thereof (this is Waldhausen’s theorem
[153], see [78] for a more accessible proof). This is the only complete invariant which it is practical
to actually calculate but since group isomorphism is algorithmically untestable (the Adian-Rabin
theorem [2] [3] [129]), this does not provide a practical method to distinguish knots either. It is
however known that the word problem for any fundamental group of any knot is solvable [154]. If
the knot is alternating, the conjugacy problem is also solvable [5].
We define the linking number of two curves a and b, denoted by lk(a, b) as the weighted sum

of the characteristics ε of each crossing. The characteristic ε is -1 or 1 depending on whether the
crossing matches respectively with the first or second of the two possible scenarios for a crossing
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Figure 1.4: The thick curve displays the trefoil knot with an orientation. The thin curve which is
parallel to the trefoil knot is the longitude; the orientation of the longitude is the same as the knot.
The thin curve encircling both trefoil and longitude at the top left hand corner is the meridian.
Note that the five conditions given in the text are fulfilled by these curves.

shown in figure 1.5. We define a meridian mi and a longitude li of a knot component Ki by
requiring the following properties: (1) mi and li are oriented, polygonal, simple and closed curves
in ∂V (Ki), the boundary of the thickened neighborhood of Ki which we denote by V (Ki), (2) mi

and li intersect in exactly one point, (3) mi is null homologous (mi ∼ 0) in V (Ki) and li ∼ Ki

in V (Ki), (4) li ∼ 0 in C (Ki) and (5) lk (mi,Ki) = 1 and lk (li,Ki) = 0 in S3. The above five
properties define mi and li uniquely up to isotopy on the boundary of V (K) [39] (see figure 1.4 for
an illustration). The meridian-longitude system pair M(K) for a j-component knot K is the pair
of sets ({m1,m2, · · · ,mj}, {l1, l2, · · · , lj}).
The knot group π(K) is the fundamental group of C(K), π1(C(K), b) where b denotes a base

point. The meridians and longitudes of a meridian-longitude system pair M(K) of the knot K
may be considered to be elements of π(K) by choosing a path pi in C(K) from the base point b to
the (unique by definition) point mi ∩ li for each i. Then the subgroup 〈mi, li〉 of π(K), generated
by mi and li is independent of the choice of pi up to conjugation. The peripheral group system of
a j-component knot K is p(K) = (π(K);M(K)). By an isomorphism φ between two peripheral
group systems p (K) ≈φ p (K ′), we mean π (K) ≈ π (K ′) such that φ (mi) = m′

i and φ (li) = l′i for
all i. It can be shown that for any two knots K1 and K2, p (K1) ≈ p (K2) if and only if K1 ≈ K2

[92]. If we restrict attention to prime knots of a single component, we have π (K1) ≈ π (K2) if
and only if K1 ≈ K2 [92]. Thus the problem of knot isotopy can be transformed into the problem
of peripheral group system isomorphism. Since it is not possible to determine, in general, if two
groups are isomorphic, this does not solve the knot classification problem.

•
xl

•

•
xi

•
xk

(1)

•
xl

•

•
xi

•
xk

(2)

Figure 1.5: The two possible forms of double points in the diagram of an oriented knot.

There exists a simple method due to Wirtinger, to find a presentation of π(K) from a diagram of
K. Suppose there are n arcs in the diagram. We label the ith arc by xi. The set {xi} for 1 ≤ i ≤ n
generates π(K). Every crossing in the diagram of K is of one of the two kinds displayed in figure
1.5. For each crossing determine its type and add the relation xlxix−1

k x−1
i ≈ e or xlx−1

i x−1
k xi ≈ e

to the group respectively. The resulting group is π(K) defined by its Wirtinger presentation. It
is a practical observation that this presentation can often be simplified considerably in that some
generators are removable [65]. In particular, π(K) for the torus knot Tp,q, which is a knot that
winds around a torus p times the short way around (meridionally) and q times the long way around
(longitudinally), is given by π(K) = 〈{a, b} : ap = bq〉 [92].
Even though π(K) can not be readily used as a practical invariant, it is however a convienient

starting point to define many other invariants, for example the Alexander polynomial [148] which
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16 Introduction to Braid and Knot Theory

was the first of the polynomial invariants and (like the Jones polynomial) revolutionized knot
theory.

1.2 Knot Notations

Knot theory has gained tremendous momentum from proofs that certain mathematical objects
are isotopy invariants of knots such as the peripheral group system discussed above. Such proofs
and general statements about knots form a large part of knot theory but in applications of knot
theory, actual computation of these objects is often necessary. Therefore, it is important to have
a practical method of computation for such invariants. Some invariants, such as the unknotting
number, can not yet be calculated in an algorithmic manner for every knot. Other invariants can
only be calculated by algorithms whose complexity increases exponentially, thus rendering them
useless for all but small knots. There exist only a few invariants which may be calculated easily.
Because it is so laborious to compute many interesting properties of a particular knot, the use

of computers is essential. However if a computer is to be used, the search for an efficient algorithm
becomes important. The pivot of all algorithms is the form of the input. For many physics
calculations, for example, the choice of coordinate system often allows far greater simplification
of the calculations than a change in computational procedure. Therefore, while the algorithm is
important, a good notation for knots is paramount. Currently there are several different systems
of ”knotation” (the term was coined by John Conway in a popular lecture with this title) which
are widely used, we shall illustrate two of them: Conway’s [50] and Dowker and Thistlethwaite’s
[58].
Conway’s knotation relies on setting up templates for knots which he calls basic polyhedra.

One inserts standard knot pieces called tangles into the vertices of the template (tangles are
introduced in chapter 5). This knotation is quite intuitive since the geometrical aspects of the
knot projection can be immediately visualized it is however non-trivial to construct the notation
given a knot projection and the notation is limited to knots with few crossings without making
necessary extensions.
The Dowker-Thistlethwaite code for a knot is an improvement of Tait’s notation. One chooses

a point on the knot at random and follows it in the direction of its orientation. The crossings are
named ”A”, ”B”, ”C” and so on in the order that they are met and one writes down which ones
one meets in order. It can be shown that only every second letter is needed as the others can be
recovered and so the notation for a knot projection of n crossings contains n letters. Implemented
algorithms to calculate most invariants from this code exist. The main application of this code
is in the computer-assisted tabulation of knots [147]. In chapter 5, we introduce a new notation
which will allow us to transform a knot into a closed braid (see next section).

1.3 Braid Theory

Figure 1.6: The (canonical) closure of a braid. In the braid group language, the braid is ∆3 =
σ1σ2σ1 and the knot is the Hopf link.
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1.3 Braid Theory 17

Figure 1.7: The plait closure of a braid. Note that there is potential conflict between orientations
of the braid strings in the plait closure; it becomes impossible to plait a braid in which all strings
are oriented in the same way.

In 1923, Alexander proved that any knot projection can be modified via Reidemeister moves
into a form with respect to a special point P in the plane which has the property that for a point
A which traverses the knot in the direction of its orientation, a plane perpendicular to that of the
projection intersecting both P and A rotates around P in a constant direction (clockwise or anti-
clockwise but never both) [4]. When Artin invented braids [7], it was noticed that if one specified
a point outside the braid to be P and connected the top and bottom ends of the braid’s strings
with each other in such a way that the connecting lines circumnavigated P (this process is called
closing a braid, illustrated in figure 1.6) and oriented the braid’s strings in a uniform (upwards or
downwards) direction, one had obtained exactly this form. Thus Alexander had shown that every
(oriented) knot can be represented by a closed (oriented) braid. In his paper, Artin had found a
group structure for braids which defined open braid isotopy - that is topological equivalence of two
braids under the restriction that the endpoints remain fixed. The method of closing a braid which
is illustrated in figure 1.6 is called the canonical closure to distinguish it from the plait closure. In
the plait closure, we join neighboring ends together as illustrated in figure 1.7. It is necessary for
the braid to have an even number of strings for the plait closure.

1.3.1 The Braid Group Bn

The braid group Bn for a braid of n strings is generated by single crossings. Suppose that all
strings are vertical apart from strings i and i+1 which cross over each other. If i overcrosses i+1,
we denote this by σi and the inverse is denoted by σ−1

i (see figure 1.8 for an illustration). The set
{σ1, σ2, · · · , σn−1} generates the group Bn and together with their inverses {σ−1

1 , σ−1
2 , · · · , σ−1

n−1},
Bn satisfies the defining relations

σiσ
−1
i ≈ e (1.2)

σiσj ≈ σjσi for |i− j| > 1 (1.3)
σiσi+1σi ≈ σi+1σiσi+1 (1.4)

where e denotes the identity element. Topologically e is the braid of n strings without any crossings;
i.e. n vertical strings. The generators σi are called Artin generators. The proof that the topological
equivalence relation of braids is identical to the group theoretical equivalence relation defined by the
equations above under the map that a crossing in the topological braid is interpreted as a generator
in the group is given in [8] or more accessibly in [39]. We shall use ≈ to denote equivalence under
a given set of identities and = to denote exact (letter by letter) equivalence.
We will call a word positive if it contains only generators and no inverses; the inverse of a

positive word is called negative. We shall call two positive braids A and B positively equal if there
exists a sequence of braids Wi for 0 ≤ i ≤ q with W0 = A, Wq = B, Wj and Wj+1 different by a
single application of the braid group’s defining relations and Wi all positive. Garside has shown
that if two positive braids are equal, they are positively equal [64].
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18 Introduction to Braid and Knot Theory

Figure 1.8: The generator σi and its inverse σ−1
i for the braid group Bn.

The length of braid A in terms of Artin generators will be denoted by L(A). A general braid
A ∈ Bn may be written in the form

A = σj1i1 σ
j2
i2
· · ·σjL(A)

iL(A)
(1.5)

where 1 ≤ ik < n and jk = ±1 for any k : 1 ≤ k ≤ L(A). We define the exponent sum, denoted
exp(A) of A by

exp(A) =
L(A)∑
k=1

jk (1.6)

It can be shown that exp(A) is a conjugacy class invariant (and hence equivalence class invariant)
of A [20]. If A is as in equation (1.5), then we define the reverse operator R by

R(A) = σ
jL(A)
iL(A)

σ
jL(A)−1
iL(A)−1

· · ·σj1i1 (1.7)

and call R(A), the reverse of A.
We define three special braid words: The fundamental braid ∆n, the ascending braid ai,j and

the descending braid di,j by

ai,j = σiσi+1 · · ·σj i ≤ j (1.8)
di,j = σiσi−1 · · ·σj j ≤ i (1.9)
∆n = σ1σ2 · · ·σn−1σ1σ2 · · ·σn−2 · · ·σ1σ2σ1 (1.10)

= a1,n−1a1,n−2 · · · a1,2a1,1 (1.11)

∆n is important in braid theory because ∆2
n generates the center of the braid group Bn [43].

Garside [64] has shown that the fundamental braid satisfies

∆nσi ≈ σn−i∆n = σ̂i∆n (1.12)
R (∆n) ≈ ∆n (1.13)

where we have defined σ̂i = σn−i. We now prove a crucial proposition.

Proposition 1.3.1 For any σ−1
i , we have σ−1

i ≈ ∆−1
n ∆n−1dn−1,i+1di−1,1.

Proof. Since ∆n = a1,n−1a1,n−2 · · · a1,2a1,1 andR (∆n) ≈ ∆n, we have ∆−1
n ≈ d−1

n−1,1d
−1
n−2,1 · · · d−1

1,1.
Thus d−1

n−1,1 ≈ ∆−1
n d1,1d2,1 · · · dn−2,1. From the definition of di,j , we have

σ−1
i ≈ σi−1σi−2 · · ·σ1d

−1
n−1,1σn−1σn−2 · · ·σi+1 (1.14)

≈ di−1,1d
−1
n−1,1dn−1,i+1 (1.15)

≈ di−1,1∆−1
n d1,1d2,1 · · · dn−2,1dn−1,i+1 (1.16)

≈ ∆−1
n an−i+1,n−1d1,1d2,1 · · · dn−2,1dn−1,i+1 (1.17)

≈ ∆−1
n an−i+1,n−1∆n−1dn−1,i+1 (1.18)

≈ ∆−1
n ∆n−1di−1,1dn−1,i+1 (1.19)

≈ ∆−1
n ∆n−1dn−1,i+1di−1,1 (1.20)
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for any i, which proves the proposition. ✷

Given two words α, β ∈ Bn, the decision problem of whether α ≈ β is called the word problem.
The word problem in the braid groups was first solved by Artin [8] and therefore provided a solution
to the problem of braid isotopy. For two words α, β ∈ Bn, if there exists a word γ ∈ Bn such that
α ≈ γβγ−1 then α and β are called conjugate, which is denoted by ≈c. If γ ≈ e, then α ≈c β
implies α ≈ β and thus the conjugacy problem, the existence decision of such a γ, contains the
word problem as a special case. The conjugacy problem for Bn was first solved by Garside [64].
The best known algorithm for the word problem was formulated by Birman, Ko and Lee [22] with
complexity O(nL2), where L denotes word length, and for the conjugacy problem by Thurston [59]
and Birman, Ko and Lee [22] with exponential complexity.
Construct the set D(A) of all words obtainable from A by rearranging of generators, this is

called the Cayley diagram of A. This set is constructed recursively from A. The first set is
D0(A) = {A} and each set Di(A) is obtained from Di−1(A) by adding all words which can be
obtained from the members of Di−1(A) by a single application of the relations 1.3 and 1.4 and are
not already members of the sets Dj(A) for 0 ≤ j < i. It is a theorem of Garside [64] that this
construction process terminates in a set Dk(A) for finite k and that thence the set D(A) which is
the union of all the Di(A) for 0 ≤ i ≤ k is finite and readily constructible. Since we do not allow
cancelations or introductions of generators by use of the relation 1.2, it is an obvious property of
D(A) that all members are of equal length L(A).
For any two braids A,B ∈ Bn we say that A is prime to B if and only if D(A) does not contain

a word in the form A ≈ A1BA2. Let the number of inverse generators in a braid A be s(A), then
proposition 1.3.1 together with equation (1.12) implies that any braid A ∈ Bn may be written
in the form Amax = ∆

−s(A)
n A′ where A′ is positive; the reason for naming it Amax will become

apparent later on. We obtain this form by replacing each inverse generator in A by the form given
in proposition 1.3.1 and then using equation (1.12) to bring all the fundamental braids to the front.
In his celebrated solution to the word and conjugacy problems in Bn, Garside [64] presents an

algorithm to put A′ into the form A′ = ∆q
nA

′′ where A′′ is prime to ∆n and another algorithm to
put A′′ into a form minimal in lexicographical order on the set of generators for the ordering σi < σj

if and only if i < j, which we call A. Garside shows that the resulting form AG = ∆
−s(A)+q
n A for

the braid A is unique. We call q − s(A) the Garside exponent and A the Garside remainder of
the braid A. Garside’s original algorithms have exponential complexities in n and L(A), however
Jacquemard constructed an algorithm with complexity O(n7L(A)3) [83].
In stating the complexities of all algorithms here, we implicitly assume that n and L(A) are

independent. Clearly, we may choose a braid A ∈ Bn of any length at all and thus it would
appear that we are justified in this assumption. In the class of non-splittable braids (A braid
A ∈ Bn+m is said to be splittable if and only if it may be written in the form A ≈ αOn(β) where
α ∈ Bn, β ∈ Bm and the operator On is defined by On(σi) = σi+n [20]) this is not true as we must
have L(A) ≥ n − 1. As in the case of worst-case complexity measurements, we are interested in
the asymptotic behavior as n and L(A) → ∞, we may continue to assume that n and L(A) are
independent. Should this in some circumstances turn out to be false, the above argument shows
that then n is of the order of L(A).
If a knot K is represented by a closed n-braid β, then the mirror image K∗ of K is represented

by the closed braid β−1 and the reverse K† (obtained by reversing the orientations) of K is
represented by R(β) or by R(β)† [117].
We will henceforth represent a commutation relation AB = BA by writing [A,B]. Put α =

a1,n−1 and β = σ1, then it can be shown that another presentation of the braid group is [51]

Bn =
〈
{α, β} : αn = (αβ)n−1 ;

[
β, α−jβαj

]
2 ≤ j ≤ n

2

〉
(1.21)

where αn is the generator of the center Z (Bn) [43]. In this formulation we trivially find the
following helpful simplifications

α−1 = α−nβ (αβ)n−2 (1.22)

β−1 = α−n (αβ)n−2 α (1.23)

α−1β−1 = α−nβ (αβ)n−3
α (1.24)

β−1α−1 = α−n (αβ)n−2 (1.25)
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1.3.2 Markov’s Theorem

Given a knot, we may produce an equivalent knot by taking any segment and twisting it about
an axis in the projection plane by π while keeping the rest of the knot stationary. This procedure
corresponds to the zeroth Reidemeister move (see figure 1.2) and adds one crossing to the diagram.
Any crossing of this type is called nugatory. If we represent a knot by a closed braid by virtue of
Alexander’s theorem, we may also add such nugatory crossings via a combinatorial move, called
the Markov or stabilization move (see figure 1.9). Stabilizing a braid α ∈ Bn corresponds to the
operation α → ασ±1

n or its inverse. Clearly stabilization increases or decreases the number of
strings in the braid and so represents a move in the family of braid groups as opposed to the
conjugacy and equivalence moves which are contained in a single braid group.

A

B

A
-1

Figure 1.9: Both conjugacy and stabilization are displayed here. We begin with braid B. Con-
jugation surrounds B with A and A−1 on opposite sides which clearly cancel due to the closure.
Stabilization introduces a simple loop at the bottom right of the braid, adds a new string to the
braid and thus increases the braid group index by one.

Markov stated in 1935 [105] that two closed braids are topologically equivalent if and only if
they differ by stabilization and conjugacy moves (recall that conjugacy contains equivalence). This
statement became known as Markov’s theorem and was first proven in [20]. In its original form,
Markov’s theorem assumes that the closed braid is embedded in S3 or R3, this can however, be
generalized to an arbitrary 3-manifold [97]. Markov’s theorem transforms the link isotopy problem
to a combinatorial question about braids. If two braids α ∈ Bn and β ∈ Bm (with n and m
possibly different) are related by stabilization and conjugacy, they are called Markov equivalent
which is denoted by ≈M . The decision problem of whether α ≈M β is called the Markov problem
or the algebraic link problem. It is possible to find a single move of which both stabilization and
conjugacy are special cases and to formulate, in this way, Markov equivalence in terms of this so
called L-move [98]. While this L-move is intuitive, it is not obvious whether the problem has been
simplified by this reformulation.

1.3.3 Stabilization is Non-trivial

The first question which arises is whether there exist non-conjugate Markov equivalent braid words
in the same braid group, that is whether a solution to the conjugacy problem will solve the
Markov problem. This is negatively resolved by showing that the two 4-braids α = σm1 σ

n
2 σ

p
1 and

β = σm1 σp2σ
n
1 with m,n, p different, odd and at least three in absolute value are not conjugate but

Markov equivalent [118]. It might be thought that it should be possible to reduce the number
of strings in a closed braid equivalent of the unknot to one. This is true as all equivalent closed
braids can be reached from each other via Markov’s theorem but the transition involves, in general,
increasing the number of strings before they may be reduced to a single string. In other words, a
greedy reduction of strings does not reach the minimum string number, also known as the braid
index (not even for the unknot representatives) [114].
It is a practical observation that finding a series of moves to demonstrate the Markov equivalence

of two closed braids is very difficult. The difficulty of finding such a sequence has lead Birman
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to believe that it may be simpler to solve Markov equivalence for two braids representing prime
knots. While this may be true, it is not, in general, easy to decide whether a braid represents a
prime knot. Schubert [132] proved that the factorization sequence of a composite knot is unique
and has found an algorithm [133] which finds it. This algorithm, consequently, is able to decide
whether a knot is prime. However, the execution of the algorithm rests on Hemion’s algorithm
since it must identify the prime factors of the knot, thus no longer necessitating a solution of the
Markov problem since it already solves the link isotopy problem (albeit impractically so). This
also shows that this method of deciding primality is not practical. Birman conjectures that a braid
represents a prime knot if and only if it is not conjugate to a split braid.
Furthermore, if Birman’s conjecture is true and we were to find an algorithm to decide whether

a braid was conjugate to a split braid, we would have to solve the Markov problem for this restricted
class of braids. If this could be done, we would have a solution to the Markov problem since every
braid could be decomposed into its split components and pair-wise tested for non-split Markov
equivalence. This would not only resolve isotopy but also give the unique prime knot factorization
of the knots. Birman’s conjecture is unproven and there exists no algorithm to test whether a
braid is conjugate to a split braid. It is possible, however, to solve the Markov problem for certain
quotient groups of the braid groups [30].

1.3.4 Strategies for the Markov Problem

Since the word and conjugacy problems are contained in the Markov problem, solutions for these
are desirable and have been given numerous times as mentioned before. The stabilization move
represents the final hurdle before link isotopy is algorithmically decidable and thus it would be
interesting to know when a braid α ∈ Bn+1 is conjugate to a braid γσ±1

n where γ contains only the
generators σi for 1 ≤ i ≤ n− 1, for then one could reduce α to γ using the Markov move. While
this has been done [107], the algorithm depends on Garside’s conjugacy algorithm [64] which has
exponential complexity. Moreover, if two braids were reduced in this way to the minimum string
number, they are not, in general, conjugate in this final braid group if they are Markov equivalent
and thus this decision procedure does not solve the Markov problem either.
We have defined the exponent sum exp(α) of a braid α as the sum of the exponents of the

Artin generators of α. It is obvious that the exponent sum is a conjugacy class invariant but not
a Markov class invariant because of stabilization. Thus it is possible for two braids to be Markov
equivalent and have different exponent sums. In getting from one braid to the other, the exponent
sum must be made equal somewhere in the chain of moves; this can clearly only be accomplished
using stabilization. Stabilization can increase or decrease the exponent sum depending whether we
add σn or σ−1

n or remove either of these. It also changes the number of strings. We may think that
starting from a positive braid, we should be able to reach any Markov equivalent positive braid
by going through a pure positive sequence of braids; that is, we may think that positive Markov
equal braids are positively Markov equal. We note that this would only be possible if the difference
in exponent sum between the two braids was precisely their difference in number of strings. We
conjecture that positive Markov equal braids are not positively Markov equal.
Much work was done by Birman and Menasco on various properties of links which could be

determined from their closed braid representatives (this work was published in the six-paper series
[23], [24], [25], [26], [27] and [28]). They prove that there exists a complete numerical invariant
for knots but find this invariant only for knots which are closed 3-braids. The invariant for closed
3-braids is described extensively and can be used to determine the braid index and whether the
knot is split, composite, amphicheiral or invertible. They also define a new type of move on braids,
the exchange move, and prove a Markov-like theorem for it. See [29] for a summary of this work.
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Chapter 2

The Word, Conjugacy and Markov
Problems

2.1 Properties of the Center of Bn

By the definition of the fundamental word ∆n, we have that

∆n = a1,n−1a1,n−2 · · · a1,2a1,1 (2.1)

It can be shown [64] that R (∆n) ≈ ∆n. It is clear that ∆n+1 = a1,n∆n and so we have an recursive
formula for obtaining the fundamental word of a higher braid group in terms of the fundamental
word of a lower braid group. Chow first showed that ∆2

n generates the center of Bn. The center
plays an important role in what is to follow and we shall have to develop some properties of it; while
most are simple to derive, they have nevertheless not been published to the author’s knowledge.

2.1.1 Algebraic Properties

Since we have a simple recursion relation for ∆n, we first prove a similar relation for ∆2
n.

Proposition 2.1.1 If ζn = R (a1,n) a1,n, then

∆2
n+1 ≈ ζn∆2

n ≈ ∆2
nζn (2.2)

Proof. Recall that σi∆n ≈ ∆nσn−i. Consider

∆n+1a1,n = ∆n+1σ1σ2 · · ·σn (2.3)
≈ σnσn−1 · · ·σ1∆n+1 (2.4)
≈ R(a1,n)∆n+1 (2.5)

then

∆2
n+1 ≈ ∆n+1a1,n∆n (2.6)

≈ R (a1,n)∆n+1∆n (2.7)
≈ R (a1,n) a1,n∆2

n (2.8)
≈ ζn∆2

n (2.9)

We also have

∆2
n+1 ≈ R

(
∆2
n+1

)
(2.10)

≈ R
(
ζn∆2

n

)
(2.11)

≈ R
(
R (a1,n) a1,n∆2

n

)
(2.12)

≈ R
(
∆2
n

)
R (a1,n)R (R (a1,n)) (2.13)

≈ ∆2
nR (a1,n) a1,n (2.14)

≈ ∆2
nζn (2.15)
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which proves the proposition. ✷

Corollary 2.1.2 Using proposition 2.1.1 inductively, it follows that for any integer k

∆2k
n+1 ≈ ζkn∆

2k
n ≈ ∆2k

n ζkn (2.16)

We may also show that the ζn commute with each other and their inverses in proposition 2.1.3.

Proposition 2.1.3 If ζn = R (a1,n) a1,n, then ζiζ
±1
j ≈ ζ±1

j ζi for all i, j.

Proof. We have

ζn+1ζn ≈ R (a1,n+1) a1,n+1R (a1,n) a1,n (2.17)
≈ R (a1,n+1)σ1 · · ·σn−1σnσn+1σnσn−1 · · ·σ1a1,n (2.18)
≈ R (a1,n+1)σ1 · · ·σn−1σn+1σnσn+1σn−1 · · ·σ1a1,n (2.19)
≈ R (a1,n+1)σn+1σ1 · · ·σn−1σnσn−1 · · ·σ1σn+1a1,n (2.20)
≈ R (a1,n+1)σn+1a1,nR (a1,n)σn+1a1,n by induction: (2.21)
≈ R (a1,n+1)σn+1 · · ·σ3σ1σ2σ1σ3 · · ·σn+1a1,n (2.22)
≈ R (a1,n+1)σn+1 · · ·σ3σ2σ1σ2σ3 · · ·σn+1a1,n (2.23)
≈ R (a1,n+1)R (a1,n+1)σ−1

1 a1,n+1a1,n (2.24)
≈ σn+1 · · ·σ1σn+1 · · ·σ1σ

−1
1 a1,n+1a1,n (2.25)

≈ σn+1σnσn+1σn−1 · · ·σ1σn · · ·σ1σ
−1
1 a1,n+1a1,n (2.26)

≈ σnσn+1σnσn−1 · · ·σ1σn · · ·σ1σ
−1
1 a1,n+1a1,n (2.27)

≈ σnR (a1,n+1)R (a1,n)σ−1
1 a1,n+1a1,n by induction: (2.28)

≈ R (a1,n)R (a1,n+1) a1,n+1a1,n (2.29)
≈ R (a1,n)R (a1,n+1)σ1 · · ·σn+1σ1 · · ·σn (2.30)
≈ R (a1,n)R (a1,n+1)σ1σ2σ1σ3 · · ·σn+1σ2 · · ·σn (2.31)
≈ R (a1,n)R (a1,n+1)σ2σ1σ2σ3 · · ·σn+1σ2 · · ·σn (2.32)
≈ R (a1,n)R (a1,n+1)σ2a1,n+1σ

−1
1 a1,n by induction: (2.33)

≈ R (a1,n)R (a1,n+1)σ−1
1 a1,n+1a1,n+1 (2.34)

≈ R (a1,n)σn+1 · · ·σ3σ2σ1σ
−1
1 σ1σ2σ3 · · ·σn+1a1,n+1 (2.35)

≈ R (a1,n)σn+1 · · ·σ3σ1σ2σ1σ3 · · ·σn+1a1,n+1 (2.36)
≈ R (a1,n)σ1σn+1 · · ·σ1σ3 · · ·σn+1a1,n+1 by induction: (2.37)
≈ R (a1,n) a1,nR (a1,n+1) a1,n+1 (2.38)
≈ ζnζn+1 (2.39)

From the definition of ζn, we have

ζn+kζn ≈ σn+kσn+k−1 · · ·σn+2ζn+1σn+2σn+3 · · ·σn+kζn (2.40)
≈ σn+kσn+k−1 · · ·σn+2ζn+1ζnσn+2σn+3 · · ·σn+k (2.41)
≈ σn+kσn+k−1 · · ·σn+2ζnζn+1σn+2σn+3 · · ·σn+k (2.42)
≈ ζnσn+kσn+k−1 · · ·σn+2ζn+1σn+2σn+3 · · ·σn+k (2.43)
≈ ζnζn+k (2.44)

(2.45)

since the highest generator contained in ζn is σn and σiσj ≈ σjσi for |i − j| > 1. Thus we have
ζiζj ≈ ζjζi for all i, j. From this it follows that ζi ≈ ζjζiζ

−1
j and ζ−1

j ζi ≈ ζiζ
−1
j . Hence all the ζi

commute with themselves and their inverses and the proposition is proven. ✷

Proposition 2.1.4 If we define ζ0 = e, then ζi = σiζi−1σi. Furthermore, we have σiζj ≈ ζjσi for
i < j or i > j + 1.
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Proof. By definition, ζi = R (a1,i) a1,i and thus ζi = σiζi−1σi for all i > 2. If we define ζ0 = e,
then ζ1 = σ2

1 = σ1ζ0σ1 and the first claim is proved.
Clearly, σiζj ≈ ζjσi when i > j + 1 since σiσj ≈ σjσi for |i− j| > 1. For the case i = j − 1, we

have

σjζj+1 ≈ σjσj+1σjζj−1σjσj+1 (2.46)
≈ σj+1σjσj+1ζj−1σjσj+1 (2.47)
≈ σj+1σjζj−1σj+1σjσj+1 (2.48)
≈ σj+1σjζj−1σjσj+1σj (2.49)
≈ ζj+1σj (2.50)

And for i < j − 1,

σiζj ≈ σiσjσj−1 · · ·σi+2ζi+1σi+2σi+3 · · ·σj (2.51)
≈ σjσj−1 · · ·σi+2σiζi+1σi+2σi+3 · · ·σj (2.52)
≈ σjσj−1 · · ·σi+2ζi+1σiσi+2σi+3 · · ·σj (2.53)
≈ σjσj−1 · · ·σi+2ζi+1σi+2σi+3 · · ·σjσi (2.54)
≈ ζjσi (2.55)

This proves the proposition. ✷

2.1.2 Word Problems

As shown above, any braid can be transformed into the form ∆−k
n P where P is a positive braid and

k a positive integer. It is trivial to extend this to the form ∆−2k
n P ′, where P ′ = ∆k

nP . Since ∆2
n

generates the center of Bn, it may be simpler to solve the word, conjugacy and possibly Markov
problems for braids in this form. The following proposition lends more weight to this intuitive
judgment.

Proposition 2.1.5 For any group G and any α, β ∈ G we have α ≈c β if and only if γα ≈c γβ
where γ ∈ C(G) where C(G) is the center of G.

Proof. If α ≈c β, then we may put α ≈ ηβη−1 for some word η ∈ G by the definition of conjugacy.
Due to the definition of the inverse, we have αα−1 ≈ e, where e ∈ G is the identity. By replacing
the inverse α−1 with α−1 ≈ ηβ−1η−1, we have αηβ−1η−1 ≈ e. Concatenate γ ∈ C(G) to the front
of both α and β, i.e. α→ γα and β → γβ, we obtain

γαηβ−1γ−1η−1 ≈ γγ−1αηβ−1η−1 (2.56)
≈ αηβ−1η−1 (2.57)
≈ e (2.58)

and thus γα ≈ ηγβη−1 by virtue of the fact that any member of center of a group commutes with
any member of the group. Thus we have proven that if α ≈c β, then γα ≈c γβ.
To prove the converse, assume that γα ≈c γβ and put α′ = γα and β′ = γβ. Therefore,

α′ ≈c β
′ and we may again put α′ = ηβ′η−1 and therefore restate the identity α′α′−1 ≈ e as

α′ηβ′−1
η−1 ≈ e. Thus,

α′ηβ′−1
η−1 ≈ γαηβ−1γ−1η−1 (2.59)

≈ αηβ−1η−1 (2.60)
≈ e (2.61)

from the above. We have proven that if γα ≈c γβ, then α ≈c β. Combining both statements, we
have proven the proposition. ✷

If we are given two words α = ∆−2k
n P and β = ∆−2k′

n P ′, then by proposition 2.1.5 the word
or conjugacy problem between α and β may be decided by deciding it between the positive braid
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words P and ∆2(k−k′)
n P ′ for k′ ≤ k. It is natural to ask whether this property extends to Markov

equivalence. We ask: Is it true that for any α, β ∈ Bn, we have α ≈M β if and only if ∆2
nα ≈M

∆2
nβ?
Note that this is enough. Repeated application of the statement would show that ∆2k

n α ≈M

∆2k
n β if and only if α ≈M β for any k, possibly negative. Note that it is not true, for any braids

α, β, γ ∈ Bn, that α ≈M β if and only if γα ≈M γβ for γ ∈ C (Bn). To see this, recall that ≈c is
a subequivalence of ≈M and α ≈c β is only true if and only if γα ≈c γβ for any γ ∈ C (Bn).

2.1.3 The Peripheral Group System

In this section we will investigate the peripheral group system of the closure of the fundamental
braids. This is interesting in its own right and will illustrate the only known complete invariant of
knots. The closure of ∆3 is the Hopf Link and the closures of the other fundamental braids look
very similar to Hopf Links. In fact so similar that we can regard the class of knots defined by the
closure of fundamental braids as a generalization of the Hopf Link. Another generalization of the
Hopf link has been investigated in the literature [40].

Figure 2.1: The braid ∆3 with labels for the Wirtinger representation of the complement of its
closure.

Consider the braid ∆3 = σ1σ2σ1, see figure 2.1. The closure of this braid is the Hopf Link and
we wish to find its peripheral group system. There are six line segments in the diagram and we
label them as in the figure. Closure identifies a number of the segments to give us,

f1,3 = f3,1 = f1,1, f1,2 = f2,1 (2.62)

and the three crossings, by Wirtinger’s method described in chapter 1, give rise to the relations

f1,2 = f−1
1,1f1,2f1,1, f1,3 = f−1

1,1f
−1
2,1f3,1f2,1f1,1, f2,2 = f−1

2,1f3,1f2,1 (2.63)

After some manipulation, we obtain

f1,3 = f3,1 = f2,2 = f1,1 (2.64)
f1,2 = f2,1 (2.65)

f1,1f2,1 = f2,1f1,1 (2.66)

So if we put a = f1,1 and b = f2,1 we get

π1

(
∆3

)
= 〈{a, b} : [a, b]〉 (2.67)

We may select any generator from the relevant component as its meridian and any path through
the component as the longitude, so the meridian-longitude system pair M

(
∆3

)
is ({a, b}, {a, b})

(recall the definition from the discussion of figure 1.4). Due to the fact that the Hopf Link has two
components, the fundamental group must have at least two generators and so this is a minimal
presentation. As mentioned above, π1

(
∆3

)
together withM

(
∆3

)
characterizes the Hopf Link up

to isotopy.
We note in particular that we needed only a single generator per component in the above

example. In an effort to see how robust this property is, we compute the peripheral group system
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for a few ∆n. When the set of meridians and the set of longitudes are both equal to the set
of generators of the fundamental group of the complement of a knot K, we speak of a trivial
meridian-longitude system pair and denote it by T (K), we omit the argument when no confusion
can arise. The labeling in figure 2.1 trivially extends to arbitrary n and we obtain,

p
(
∆1

)
= (〈{a}〉 ; T ) (2.68)

p
(
∆2

)
= (〈{a}〉 ; T ) (2.69)

p
(
∆3

)
= (〈{a, b} : [a, b]〉 ; T ) (2.70)

p
(
∆4

)
=

(〈
{a, b} : (ab)2 = (ba)2

〉
; T
)

(2.71)

p
(
∆5

)
= (〈{a, b, c} : [a, b], [a, c], [b, c]〉 ; T ) (2.72)

p
(
∆6

)
=

(〈
{a, b, c} : (acb)2 = (bac)2 = (cba)2

〉
; T
)

(2.73)

p
(
∆2

3

)
= (〈{a, b, c} : [a, b], [a, c], [b, c]〉 ; T ) (2.74)

where we have assigned the fi,1 to consecutive letters of the alphabet. Also, due to the definition
of ∆n, we have ∆1 = e and ∆2 = σ1. Aside from obvious patterns, we have thus shown that ∆5

is ambient isotopic to ∆2
3 (see figure 2.2).

Proposition 2.1.6 Let S = {gi} for 1 ≤ i ≤ m, G = g1g2 · · · gm and Gc be the cth cyclic
permutation of G,

Gc = gc+1gc+2 · · · gmg1g2 · · · gc (2.75)

We have G ≈ Gc for all c if and only if [gi, gj ] for all i and j.

Proof. If gigj = gjgi for all i and j, then G ≈ Gc is obvious, so we need to prove the converse.
For m = 1, 2 the result is trivially true. Consider

gcG
cgc+1 = Gc−1gcgc+1 = gcgc+1G

c+1 (2.76)

but Gi ≈ Gj for all i and j by assumption. Hence [gi, Gj ] and thus [gi, gj] for all i and j. ✷

The free Abelian group Ck∞ of rank k is given by the direct product of k copies of the infinite
cyclic group on one element. Let C∞ be the infinite cyclic group on one element, then C∞ =< {a} >
[51]. The kth direct product

Ck∞ = C∞ × C∞ × · · · × C∞︸ ︷︷ ︸
k times

(2.77)

has presentation

Ck∞ = 〈{gi} for 1 ≤ i ≤ k : [gi, gj] ∀i, j〉 (2.78)

Comparing this with the information in equations 2.68 to 2.74 suggests that the peripheral group
system of the closure of fundamental braids is the free Abelian group of rank n with trivial meridian-
longitude system for odd n.
In figure 2.2, we demonstrate how the labeling is to be extended for a product of several ∆3.

This generalizes in an obvious way to ∆p
n, which we consider now. Through double-labeling some

segments, we have

fjn+1,k = fjn+1−k,1 (2.79)

for 1 ≤ j < p and 1 ≤ k ≤ n and closure gives

f1,k = fpn+1−k,1 (2.80)

The relations due to crossings are

fr,c = f−1
r,1 fr+1,c−1fr,1 (2.81)
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Figure 2.2: The braid ∆2
3 with labels for the Wirtinger representation of the complement of its

closure.

by using (2.81) recursively, we find that

fr,c =
c−2∏
k=0

f−1
r+k,1

0∏
k=c−1

fr+k,1 (2.82)

for 1 ≤ r ≤ pn and 1 ≤ c ≤ n − [r − 1 mod n]. We may use relations (2.82) to eliminate all fr,c
with c > 1 in terms of fr,1. For convenience we put gr = fr,1. Equations (2.79) and (2.80) may be
written in one and combined with (2.82) to give a compact description of the fundamental group
of the complement of ∆p

n

π1

(
∆p
n

)
=

〈
{gi}1 ≤ i ≤ pn : gjn−c =

c∏
k=1

g−1
r+k

1∏
k=c+1

gr+k

〉
(2.83)

where r = (j mod p)n, 1 ≤ j ≤ p and 0 ≤ c ≤ n− 1.

2.2 A Review of Term Rewriting Systems

The following presentation of the theory of term rewriting systems is intentionally simplified and
incomplete; only results which are of direct relevance to the new material are presented. A more
complete treatment of the theory may be found in the monograph [9] and the review papers [56],
[95], [84].
We begin with a finite alphabet of constants A and a finite set of variables X . A term t is a

finite ordered sequence of constants and variables t = a1a2 · · ·an with n ≥ 0 (i.e. empty terms
are allowed) and ai ∈ A ∪ X . A word w is a finite ordered sequence of constants w = b1b2 · · · bm
with m ≥ 0 and bi ∈ A. A substitution ρ for a term t is a map which assigns a word to each
variable in t; the resultant word is denoted by ρt. A term rewriting system (TRS) R = {(li, ri)} is
a set of ordered pairs of terms li and ri. Each ordered pair in R is referred to as a rule or rewrite
rule and is often written in the form li → ri; the whole TRS is sometimes denoted by →R. A
TRS R = {(li, ri)} is applied to a word w0 by determining if w0 contains the word ρli, for some
substitution ρ, as a subword. If and only if w0 contains ρli is ρli replaced by ρri. If → is a rewrite
rule, then ← is its inverse, ↔ is its symmetric closure (← ∪ →) and →� is its reflexive-transitive
closure (→ ◦ → ◦ · · · ◦ →). Two terms t and s are said to be joinable if there exists a term r such
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that t→� r ←� s. Any li is called a redex and any ri is called a reduct (these are abbreviations of
reducible expression and reduced term).
A word w0 is thus rewritten into a word w1 if and only if R may be applied to w0. We may

generate a rewrite chain of words w0 →R w1 →R · · · in this manner. R terminates if and only
if there exists no rewrite chain of infinite length. R is locally confluent if and only if any local
divergence ← ◦ → is contained in the joinability relation →� ◦ ←�. R is confluent if and only if
any divergence ←� ◦ →� is contained in the joinability relation →� ◦ ←�. R is complete if it is
confluent and terminates. If R is complete a unique normal form exists for each word [9]; the final
form obtained by applying R to the word a maximum number of times.
It should be noted that the computational power of term rewriting systems is identical to that

of Turing machines, i.e. one may be simulated by the other [149]. According to the Church-
Turing thesis [47], this means that any function which may reasonably be termed computable is
computable using a TRS.

2.2.1 Word Problems

Consider a group G with presentation G = 〈X,E〉 for some finite set of generators X = {fi} and
a finite set of equations E. A word in the group is then a sequence of the generators and their
inverses f−1

i . It is possible to construct a large (possibly infinite) number of words in G which
are all equivalent to the empty word e under the set of equations E. It was first proposed by
Dehn [53] that the question, known as the word problem, whether w ≈E e for any word w ∈ G
is interesting. Note that the question of equality, w1 ≈E w2 for any two words w1, w2 ∈ G is
contained in the word problem as w1 ≈E w2 if and only if w1w

−1
2 ≈E e. Two related problems,

also suggested by Dehn, are the conjugacy problem in which one decides if there exists a w3 ∈ G
such that w1 ≈E w3w2w

−1
3 and the isomorphism problem in which one decides if a presentation of

some group G′ = 〈{f ′
i}, E′〉 represents the same group as G. All three are, in general, unsolvable.

It was proven by Birkhoff [19] that the symmetric-reflexive-transitive closure ↔�
R of a TRS

R = {(li, ri)} is equivalent to the set of equations E = {li = ri}. It is an obvious corollary to
Birkhoff’s theorem that if there exists a complete TRSR over the alphabet A = {fi, f−1

i } for which
↔�

R contains exactly the equations {E , fif−1
i = e, f−1

i fi = e}, then R solves the word problem for
the group G = 〈{fi}, E〉.
Note that R also solves the word problem for the monoid associated with G, i.e. the monoid

obtained when the inverses of the generators are added to the set of generators and the fact that the
generators and inverses are in fact inverses (fif−1

i = e, f−1
i fi = e) added to the set of equations.

It can be shown that the solubility of the word problem does not depend on the presentation in
the case of a group [110] but does depend on the presentation in the case of a monoid (recall
that a general monoid need not have inverses) [31] [12]. However there exist groups, and hence
monoids, for which the word problem is not solvable [121] [32]. This fact is a special case of the
Higman Embedding Theorem [79] which asserts that if a finitely generated group has a recursively
enumerable set of relations, then it can be embedded in a finitely presented group. It can be
shown that this embedding preserves the solubility of the word problem [45] but not the conjugacy
problem [49]. This gives an immediate source of groups with solvable word problem and unsolvable
conjugacy problem.
All mathematical unsolvability results can be traced to the fact that there exist recursively

enumerable sets (there exists an algorithm to list all elements) which are not recursive (there
exists an algorithm for testing membership) [110]. Since the conjugacy problem includes the word
problem (put w3 = e in the discussion above) a similar result exists for it with the notable exception
of all groups with a single relation for which there exists an algorithm for the conjugacy and hence
word problems [88]. Moreover, the isomorphism problem is, in general, unsolvable also [2] [3] [129].
The situation is, in fact, even worse as there exists no algorithm which solves the word problem
in all groups with solvable word problem (this holds for most of the interesting group properties
[13]) and the problem of determining whether a group has solvable word problem is Σ0

3-complete
[33] [103] in the Kleene (or Grzegorczyk) arithmetical hierarchy [63] (that is the problem is much
harder than an NP-complete problem, if P �= NP). For a good survey on what is and what is not
possible see [110] and [109], for background on other methods of combinatorial group theory see
[102] and [51].
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2.2.2 Termination

It is, in general, undecidable whether a TRS terminates or not [82]. Since any Turing machine
can be modeled using a TRS this is essentially due to the undecidability of whether a Turing
machine will stop, the Turing Halting Problem [150]. It is however decidable for a TRS without
any variables [55]. Thus, in general, a termination proof is specific to a particular TRS and must
be given for it. A common strategy for proving termination is to use a reduction order on the
symbols involved in the TRS. We define a reduction order <o as a strict order over the alphabet
and variables of the TRS which satisfies:

1. compatibility: For all terms u, v for which u <o v, we have xuy <o xvy for any terms x
and y.

2. closure: For all terms u, v for which u <o v and all substitutions σ, we have σu <o σv.

3. basis: <o is well-founded, i.e. there exists a simplest term under <o.

If one can show that every possible rewriting operation simplifies any term with respect to such
an ordering, then the TRS terminates [54]. Furthermore, a TRS R terminates if and only if there
exists a reduction order <o which satisfies ri <o li for every rule li → ri ∈ R [9]. This is true
because every step of the rewriting process simplifies the term and there exists a simplest term.
Another useful result is that a TRS terminates if and only if it terminates for all instances of its
redexes [57]. Some conditions under which the union of two terminating TRSs is terminating are
analyzed in [57].

2.2.3 Confluence

Like termination, confluence is, in general, undecidable [9]. However, for terminating systems there
exists a mechanizable method for deciding confluence [80] that rests on Newman’s Lemma which
states that a terminating TRS is confluent if and only if it is locally confluent [120] (we shall prove
a generalization of this in lemma 2.3.5). Local confluence can be decided by a systematic method
which searches for critical pairs in the TRS. The concept of critical pairs is difficult to trace in
history; for an attempt at a historical survey see [38] and for a good technical treatment see [80].
Given a TRS R = {(li, ri)}, an overlap is a word w = abc such that ab = ρli and bc = ηlj for

some words a, b and c, two (possibly equal) integers i and j and substitutions ρ and η. Clearly the
overlap abc may be rewritten to both ρric and aηrj . An overlap is non-critical if the reducts are
joinable, ρric ↔�

R aηrj and critical otherwise. A critical pair is the (unordered) pair (ρric, aηrj)
which arises from a critical overlap. It is obvious that if R contains critical pairs, it can not
be confluent. The fact that the non-existence of critical pairs is both a necessary and sufficient
condition for local confluence is called the Critical Pair Lemma [87]. Later we shall prove lemma
2.3.6 which contains the Critical Pair Lemma.

2.2.4 Completeness

If we can find a reduction order for a TRS R, thereby prove termination and find that there are
no critical pairs, R is complete and thus solves the word problem for↔�

R. A general procedure for
what to do when we can not do this is called Knuth-Bendix completion from their seminal paper
[96]. Again a historical account of this procedure is tangled and [38] is an attempt to unravel it.
We shall follow the common practice to call it Knuth-Bendix completion even though, by their
own admittion, the initial idea was not theirs.
Suppose we have a set of equations E on an alphabet A and a total order <A (this is a reduction

order) on A. Construct a TRS R from E by creating a rule li → ri in R from the equation li = ri
in E for all equations in E such that the rules are ordered such that li >A ri. Now↔�

R is equivalent
to E and each rule represents a simplification in terms of <A. Clearly there exists a simplest word,
the empty word, and so R terminates.
If there are no critical pairs, R is locally confluent and thus complete. If there are critical

pairs, order them with respect to <A and append them to R as new rules. Termination still holds
and so we continue this process. We may delete duplicate or redundant rules from R between
the steps of this method to obtain a smaller TRS. If this method terminates, we have a complete
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system [96] [81]. If it does not terminate, a complete system may still exist which contains an
infinite number of rules. It is possible to collect an infinite number of rules into a finite number
of rules by introducing variables. The Knuth-Bendix algorithm has been implemented by several
people and can be used to determine, in some cases, whether a complete system exists. The CiME
implementation was used for this thesis [104]. Producing rules with variables and proving the
non-existence of critical pairs is, at present, beyond the computer implementations and must be
done manually.

The process described here is simplified; there are more pitfalls, in general, and the method has
been considerably extended to take into account many other features (many relevant references
are in [38]). The method as described is enough for our purposes here however and is generally
enough for a word problem in a finitely presented group.

2.3 Word and Conjugacy in Bn

Having reviewed TRS’s, we are now in a position to find a TRS for the word problem in Bn. The
braid group Bn is defined formally as

Bn = 〈{σ1, σ2, · · · , σn−1} : σiσi+1σi = σi+1σiσi+1;
σiσj = σjσi for |i− j| > 1〉

(2.84)

Given a finitely presented group G = 〈X,E〉, we can define an associated monoid M(G) =〈
X ∪X−1, E ∪ aa−1 = 1

〉
for any a ∈ X . It is clear that the equivalence and conjugacy classes of

the group G and the monoid M(G) are identical. In order to solve the word problem for Bn, we
augment the monoid M (Bn) with the generator of the center of Bn, ∆2

n to form the monoid

M+ (Bn) = 〈{σ±1
1 , σ±1

2 , · · · , σ±1
n−1,∆

±2
n } : ∆±2

n σi = σi∆±2
n ;

∆±2
n ∆

∓2
n = σ±1

i σ∓1
i = e;

σ±1
i σ

±1/∓1
j = σ

±1/∓1
j σ±1

i for |i− j| > 1;
σ±1
i σ±1

i+1σ
±1
i = σ±1

i+1σ
±1
i σ±1

i+1 〉

(2.85)

It is obvious from the definition of the monoid M+ (Bn) that a solution of its word and conjugacy
problems provides a solution for the word and conjugacy problems in the group Bn.

2.3.1 The Word Problem in Bn

We will use Knuth-Bendix completion upon the oriented rules of M+ (Bn) under the reduction
order <b

∆2
n <b ∆−2

n <b σ1 <b σ2 <b · · · <b σn−1 <b σ
−1
1 <b σ

−1
2 <b · · · <b σ

−1
n−1 (2.86)

In practice, this process is laborious and would occupy prodigious space if described in detail. For
this reason, we will simply state the result and prove it to be correct.

For what follows, we shall represent a braid of the form ∆2k
n P as the pair (k, P ). The reason

for this is to effectively remove from the braid, in the process of rewriting, any subbraid which lies
in the center of the braid group Bn. The reason for this will become apparent when we extend
our solution to the conjugacy problem. Removing any ∆2k

n from any part of a braid can be done
without loss of information because ∆2k

n is the generator of the center of Bn and thus its position is
irrelevant. By Knuth-Bendix completion and the necessary manual labor, we obtain the following
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rewriting system.

Wn = {(1) σ−1
i →

i−1∏
j=1

[dj,1a1,j ] di,1a1,i−1

n−1∏
j=i+1

[dj,1a1,j ] & k → k − 1;

(2) σiσj → σjσi for j < i− 1;
(3) σiσi−1Pσi → σi−1σiσi−1P ;

(4) σiσi−1Qσi−1Rdi,j → σi−1σiσi−1Qdi−1,jσiR
+ for j < i;

(5)
n−1∏
i=1

di,1a1,iSi →
n−1∏
i=1

Si & k → k + 1 }

(2.87)

The variables P , Q, R and Si are (possibly empty) words in the generators σk (and not their
inverses σ−1

k ) subject to the restriction that the highest generator index k is i − 2, i − 2, i − 1
and i respectively and the lowest generator index in R is j, where i and j refer to the values
of the generator indices of the respective rules. The word R+ is obtained from R by increasing
all generator indices in R by one. Note that rules 1 and 5 require two replacements to be made
simultaneously. A similar, unpublished TRS was also found using Knuth-Bendix completion by
Yoder [161]. Rules 1 and 5 are simple to understand; the other rules are illustrated in figure 2.3.

Rule 2:

Rule 3:

Rule 4:

Figure 2.3: Rules 2, 3 and 4 of TRS Wn illustrated.

Theorem 2.3.1 Wn is complete and solves the word problem for Bn.
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Table 2.1: Overlaps between rules in Wn. (The ellipses, · · · , indicate line breaks and not pattern
continuation signs.)

→ Overlap Final Form
2, 2 σiσjσk σkσjσi
2, 3 σiσjσj−1Pσj σj−1σjσj−1Pσi
2, 3 σiσi−1σjPσi σjσi−1σiσi−1P
2, 3 σiσi−1Pσiσj σi−1σiσi−1Pσj
2, 4 σiσjσj−1Qσj−1Rdj,k σj−1σjσj−1Qdj−1,kσjR

+σi
2, 4 σiσi−1σkQσi−1Rdi,j σkσi−1σiσi−1Qdi−1,jσiR

+

2, 4 σiσi−1Qσi−1Rdi,jσk σi−1σiσi−1Qσkdi−1,jσiR
+

2, 5
n−1∏
i=1

di,1a1,iSi;Sj = σkS
′
j

n−1∏
i=1

Si;Sj = σjS
′
j

3, 3 σiσi−1Pσiσi−1P
′σi σi−1σiσi−1Pσi−1P

′σi
3, 4 σiσi−1Pσiσi−1Qσi−1Rdi,j σi−1σiσi−1Pσi−1Qσi−1Rdi,j
3, 4 σiσi−1σi−2Pσi−1R · · · σi−2σi−1σi−2σiσi−1σi−2P · · ·

· · ·σi−2R
′σi−1R

′′di,j · · ·Rdi−2,jσi−1R
′+σiR

′′+

3, 4 σiσi−1σi−2Pσi−1Rσi−1R
′di,j σi−2σi−1σi−2σiσi−1σi−2PRdi−2,jσiR

′+

3, 4 σiσi−1σi−2Pσi−1Rσi−2R
′di,j σi−2σi−1σi−2σiσi−1σi−2PRdi−2,jσi−1R

′+

3, 4 σiσi−1σi−2Pσi−1Rdi,j σi−2σi−1σi−2σiσi−1σi−2PRdi−2,j

3, 4 σiσi−1Pσi−1Rdi,jR
′σk σi−1σiσi−1Pdi−1,jσiR

+R′σk

3, 5
n−1∏
i=1

di,1a1,iSi;Sj = σj−1PσjS
′
j

n−1∏
i=1

Si;Sj = σj−1PσjS
′
j

4, 4 σiσi−1Qσi−1Rdi,jQ
′σk−1R

′dk,m σi−1σiσi−1Qdi−1,jσiR
+Q′σk−1R

′dk,m
4, 4 σiσi−1σi−2Qσi−2Rdi−1,jQ

′di,k σi−2σi−1σi−2σiσi−1σi−2Q · · ·
· · · di−2,kdi−1,j+1σiR

++Q′+

4, 4 σiσi−1Qσi−1Rdi,j σi−1σiσi−1Qdi,jσiR
+

4, 5
n−1∏
i=1

di,1a1,iSi
n−1∏
i=1

Si

Sj = σj−1Qσj−1Rdj,kS
′
j Sj = σj−1Qσj−1Rdj,kS

′
j

Proof.(termination) Every application of Wn simplifies the word with respect to <b. As <b is
well-founded, Wn terminates.

(local confluence) There are 20 overlaps between the rules inWn and none give rise to a critical
pair. For reasons of space, we do not provide all the reduction steps for each overlap but list all
overlaps, the rules from which they arise and the common reduct of all reduction paths of the
overlap in table 2.1. The restrictions on the indices and the variables are obvious from the context
and the definition of Wn. The dedicated reader may easily but laboriously verify that the list is
both complete and correct. There are an additional 16 (four variables and four positive redexes)
variable overlaps, i.e. overlaps in which a variable completely contains a redex, but these resolve
trivially and so are not listed in the table.

(equivalence) Rules 2 and 3 imply both braid group relations. Rule 5 represents the definition
of ∆2

n in terms of the σi. The second parts of rules 1 and 5 imply that ∆
2
n and ∆

−2
n are inverses.

Rule 1, after use of the braid group relations, the definition of ∆2
n and ∆−2

n indicates that σi and
σ−1
i are inverses. All (and only) the relations in the monoid M+ (Bn) are thus contained in Wn.

✷

The rules of a TRS are to be applied in a non-deterministic way and a complete TRS always
reaches the unique normal form no matter what strategy of rule application is chosen [9]. Since
Wn is complete and all strategies are equivalent, we will choose the following strategy.

Algorithm 2.3.2 Input: A word w ∈ Bn. Output: A word w′ ∈ Bn which is the unique represen-
tative of the equivalence class of w.

1. Apply rule 1 of Wn as many times as possible.
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2. Apply rules 2, 3, 4 and 5 of Wn as many times as possible in order proceeding to the next
rule only if the current can no longer be applied.

3. Loop step 2 until no rule may be applied to the word at all. In this case w′ has been found.

It is clear that algorithm 2.3.2 solves the word problem from the completeness of Wn and the
fact that once rule 1 is applied as many times as possible, it can not be applied again no matter
what other rewrite steps follow as there will be no more inverse generators. From this algorithm,
we are able to deduce the computational complexity of this word problem solution.

Theorem 2.3.3 Wn solves the word problem for any word w ∈ Bn of word length l with complexity
O
(
l2n4

)
.

Proof. Suppose that w contains exactly m inverse generators. Rule 1 may be applied exactly
m times, note that m goes as O(l). We must search the word for the redexes of rule 1 and then
replace them. Searching is an O(l) operation but the reducts increase in length as n2 and thus the
application of rule 1 takes time O

(
ln2

)
. It is clear that rule 1 may never be applied again and the

word length of w is now L(w) = l +mn(n − 1)−m = O
(
ln2

)
as m is of order l. Rule 2 may be

applied a number of times bounded by L(w)2 as it is a pairwise comparison between all generators
in the word, at worst. An application of rules 3 and 4 may give rise to a further application of
itself or the other rule but strictly later in the word and thus the number of times they may be
applied is bounded by L(w). While rules 2, 3 and 4 keep the word length constant, rule 5 reduces
it by n(n+ 1) and thus rule 5 may be applied a maximum of

l +mn(n− 1)−m

n(n+ 1)
=

O
(
ln2

)
O (n2)

= O (l) (2.88)

times. Thus the total worst-case complexity of the algorithm is O
(
L(w)2

)
= O

(
l2n4

)
. The

application of rule 2 is responsible for the quadratic behavior; it is the bottleneck of the calculation.
✷

2.3.2 The General Conjugacy Problem

Recall that two words a, b ∈ G for any group G are called conjugate (denoted a ≈c b) if and only
if there exists a d ∈ G for which a ≈ dbd−1 where ≈ denotes equivalence in G. Note that there
exist finitely-presented groups with solvable word problem but unsolvable conjugacy problem [48]
and that the word problem is subsumed by the conjugacy problem by requiring d = e, the empty
word.

Conjugacy in Free Groups

Suppose that G = Fn the free group of rank n. This group is generated by n elements {fi} for
1 ≤ i ≤ n and no relations [86]. A general word w ∈ Fn takes the form

w = fp1s1 f
p2
s2 · · · f

pm
sm

, 1 ≤ sk ≤ n (2.89)

Since there are no relations in Fn, the word w is unique over its equivalence class if and only if
si �= si+1 for all i. This condition is trivially obtained from any word w ∈ Fn by applying the
(obviously) complete rewriting system

Rw (Fn) = {fps f qs → fp+qs , ∀1 ≤ s ≤ n} (2.90)

Thus Rw (Fn) solves the word problem in any free group Fn. Moreover, it does so in a time
proportional to the length of the word w.
Consider now the conjugacy problem in Fn. We define the ith cyclic permutation Ci(w) of a

word w in the general form of equation (2.89) by

Ci(w) = f
p′j
sj · · · fpm−1

sm−1
fpm
sm

fp1s1 f
p2
s2 · · · f

p′′j
sj (2.91)
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such that

p′j +
m∑

k=j+1

pk = i (2.92)

Intuitively, the ith cyclic permutation is obtained by taking the last i generators in the word w and
moving them to the front of the word w without changing their relative order. We shall say that
two words w and w′ are cyclicly permutable (denoted ≈cp) if and only if there exist an i such that
Ci(w) ≈ w′. It is obvious that cyclic permutability forms an equivalence relation for any group G.

Proposition 2.3.4 For any group G, the equivalence relation of cyclic permutability (≈cp) is
identical to that of conjugacy (≈c).

Proof. Any group G has a presentation which may be obtained from some free group Fn of rank
n by adding relations [51]. Moreover, if the conjugacy problem is solvable in one representation, it
is solvable in all [110]. Suppose w ≈cp w

′, then there exists an i for which

w′ ≈ Ci(w) = f
p′j
sj · · · fpm−1

sm−1
fpm
sm

fp1s1 f
p2
s2 · · · f

p′′j
sj (2.93)

where

p′j +
m∑

k=j+1

pk = i (2.94)

Let

γ = fp1s1 f
p2
s2 · · · f

p′′j
sj (2.95)

Then

w′ ≈ f
p′j
sj · · · fpm−1

sm−1
fpm
sm

γ (2.96)

≈ γ−1γf
p′j
sj · · · fpm−1

sm−1
fpm
sm

γ (2.97)

≈ γ−1wγ (2.98)

Thus we have w ≈c w
′. Now suppose w ≈c w

′, then there exists a γ such that

w′ ≈ γ−1wγ (2.99)

If the word length of γ is L(γ), then we have

CL(γ)(w′) ≈ γγ−1w ≈ w (2.100)

Thus w ≈cp w
′. ✷

We will refer to the set of words which contains the word w and all its cyclic permutations
as the cyclic word c(w). If L(w) = m, then this set contains |c(w)| = m elements. Given two
cyclic words c(w) and c(w′) we test their equivalence by attempting to construct an isomorphism
ι : c(w)→ c(w′) such that ι(a) = a for all a ∈ c(w). Clearly |c(w)| = |c(w′)| is a necessary condition
for the existence of ι. If and only if ι exists, the cyclic words are considered equal, c(w) = c(w′).
If and only if c(w) = c(w′), we have w ≈c w

′ by proposition 2.3.4. The set c(w) may be visualized
as the word w ”made circular” as in figure 2.4.
The existence of ι may be established by testing the members of c(w) for equality with the

members of c(w′) pairwise in the following manner: Select from c(w) an arbitrary member, a say.
Check a for equivalence with all members of c(w′). Clearly, if and only if there exists a b ∈ c(w′)
such that a = b, an ι exists. Since every word has length m and there are m words in c(w′), this
comparison will take a time proportional to m2. Thus it is possible to test the equivalence of two
cyclic words of length m with complexity O

(
m2

)
.
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Figure 2.4: The word w given in equation (2.89) bent into a circle. While the circularity removes
the notions of beginning and end of a word, it preserves the directionality of it.

Rewriting Systems for Cyclic Words

We shall call a TRS cyclicly terminating, cyclicly confluent and cyclicly locally confluent if it is
respectively terminating, confluent and locally confluent under application to all cyclic words over
the alphabet of the TRS. It is obvious from the above discussion that a cyclicly complete TRS
solves the conjugacy problem. For this reason it is important to develop results about cyclic
completeness along the lines of the results for linear words in order to obtain a conjugacy solution.

Termination in Cyclic Rewriting Systems

We have seen that a TRS R terminates if and only if a reduction order exists [9]. In what follows,
we shall assume that this reduction order is a total order; note that this is a stricter requirement
than that of a reduction order. Suppose that the alphabet of R is A = {fi} for 1 ≤ i ≤ p. By
assumption, p is finite. Consider the total order <R defined by fi <R fi+1 for all i. This can be
done without loss of generality as a mapping from A to itself can change the order. Recall that R
terminates if and only if ri <R li for every rule li → ri ∈ R.
We introduce an integer valued weight metric function g(w) and an integer valued length metric

function L(w) on the set of words w written on the alphabet A. The metrics satisfy

g (fa1fa2 · · · fam) = g (fa1) + g (fa2) + · · ·+ g (fam) (2.101)
L (fa1fa2 · · · fam) = L (fa1) + L (fa2) + · · ·+ L (fam) (2.102)

L (fi) = 1 (2.103)
g (fi) < g (fi+1) (2.104)

We shall call a rule length reducing if L(ri) < L(li) and weight reducing if g(ri) < g(li). Any rule
is a c-obstruction (for commutation-obstruction) if and only if it keeps constant both length and
weight. That is, it is a rule which changes the position of the letters only.
A c-obstruction obstructs cyclic termination as there exist cyclic words which would give rise to

an infinite rewriting chain due the changing of relative position of subwords by the c-obstruction.
An example is the cyclic word c(αβαβ) under the TRS R = {αβ → βα}. The rewriting chain
will loop between the two states c(αβαβ) and c(βααβ); the period of the loop may, in general,
be arbitrarily large. Such looping may be dealt with in two ways. Firstly, one may compare each
new cyclic word with the entirety of the rewrite chain so far enumerated. If equality is found,
looping has been detected and one may stop. Secondly, one may determine if a subword of the
current word commutes with the rest of the word. If this can be determined and such a subword is
found, the subword may be extracted from the word and the two words should then be rewritten
separately. The first method is computationally expensive and does not produce a unique normal
form as we would have to consider the entire loop at the end of the rewrite chain as the identifying
set of the word. The second method is not necessarily applicable but if it is, it will terminate in a
set of subwords which uniquely identify the word. The advantage of the second method over the
first is that the number of elements in the set has an upper bound.
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We conjecture that a TRS R cyclicly terminates if and only if it terminates and contains no
c-obstructions or contains c-obstructions that can be removed in the above way.

Confluence in Cyclic Rewriting Systems

Newman’s Lemma [120] extends easily to the cyclic case as we show below.

Figure 2.5: The proof of Newman’s Lemma (lemma 2.3.5) in diagrammatic form. We begin at the
top with a local divergence which is rectifiable by assumption and thus by induction any global
divergence is also rectifiable. It is because of this diagrammatic proof that Newman’s Lemma is
also known as the Diamond Lemma.

Lemma 2.3.5 A cyclicly terminating TRS R is cyclicly confluent if and only if it is cyclicly locally
confluent.

Proof. This proof is similar to the one given for the standard Newman Lemma in [80]. The result
is obvious from figure 2.5.

(if) We want to show that if y ←∗ x→∗ z, then the final forms of y and z are identical, which
exist since R cyclicly terminates. If x = y or if x = z, the result is obvious. If x → y1 →∗ y
and x → z1 →∗ z, then there exists a u such that y1 →∗ u ←∗ z1 by cyclic local confluence. The
existence of a w such that y →∗ w ←∗ z follows by induction over arbitrary length rewriting paths;
the finiteness of all rewriting paths is attested to by cyclic termination.

(only if) This it trivial as cyclic local confluence is subsumed by cyclic confluence. ✷

The Critical Pair Lemma states that a TRS is locally confluent if and only if it has no critical
pairs. Recall that a critical pair arises from an overlap of two redexes in a word which gives rise
to a local divergence of rewriting paths which do not meet again. Given a TRS R = {(li, ri)}, a
cyclic overlap is a cyclic word c(w) = c(abcd) such that abc = ρli and cda = ηlj for some words
a, b, c and d, two (possibly equal) integers i and j and substitutions ρ and η. The cyclic overlap
c(abcd) is rewritten to both c(ρrid) and c(bηrj). A cyclic overlap is non-critical if the reducts are
joinable, c(ρrid) ↔�

R c(bηrj) and critical otherwise. A cyclic critical pair is the (unordered) pair
of cyclic words (c(ρrid), c(bηrj)) which arises from a cyclic critical overlap. It is obvious that if R
contains cyclic critical pairs, it can not be cyclicly confluent.
For example, consider the rewrite system R = {abxba → cxc} over the alphabet A = {a, b, c}

and some variables x and y. Clearly R contains the cyclic critical overlap abxbabyb which is to be
rewritten into bxbcyc and cxcbyb. This cyclic critical pair may be resolved by noting that if the
variable contained between the c letters is less than the other, it is that cyclic word which is to
be prefered under the lexicographic order c < b < a. That is, we have to add a conditional rule
depending on the relative value of the variables. This global rule must be applied, if applicable, with
preference over the ordinary local rule. In this way we have extended Knuth-Bendix completion
to the cyclic case; note that all rules added in this procedure are global whereas the usual rules
of normal TRS’s are local. We shall now prove the extention of the Critical Pair Lemma for the
cyclic case.
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(a) (b)

(c) (d)

(e)

Figure 2.6: The proof of lemma 2.3.6 in its four cases: (a) the disjoint case, (b) the variable overlap
case, (c) the critical overlap case, (d) the orthogonal case, (e) the circular critical overlap case.

Lemma 2.3.6 A TRS R = {(li, ri)} is cyclicly locally confluent if and only if it contains neither
critical nor cyclicly critical pairs.

Proof. We consider all relative positions of two redexes li and lj in a cyclic word w and analyze
them in turn. The first four cases occur in the standard Critical Pair Lemma but in the cyclic case
there are five cases:

1. (disjoint) Suppose c(w) = c(lixljy) for some words x and y. The existence of the common
reduct c(rixrjy) is obvious; see figure 2.6 (a).

2. (variable overlap) Suppose li contains a variable which contains lj as a subterm. If lj → rj
does not change the applicability of li, a common reduct is obvious. If it does and the
divergence does not resolve, we have an instance of a critical pair; see figure 2.6 (b).

3. (critical overlap) Suppose li and lj have a critical overlap. A critical pair exists and obviously
prevent local confluence; see figure 2.6 (c).

4. (orthogonal) Suppose li and lj have a non-critical overlap. By definition the divergence
resolves; see figure 2.6 (d).
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5. (cyclical critical overlap) Suppose li and lj have a cyclic overlap. If it is critical, we have
an instance of a cyclic critical pair which obviously prevents cyclic local confluence. If it is
non-critical, a common reduct exists by definition; see figure 2.6 (e).

✷

It should be emphasized that the proof lemma 2.3.6 does not make any assumptions about
the termination of R. So we have a definite method for attempting to find a conjugacy problem
solution in terms of rewriting. We shall use the braid groups to give an example of this completion
process.

Yoder’s Theorem

An alternative way to conceive of a conjugacy problem solution given a word problem solution was
originally reported in Margaret Yoder’s PhD thesis [161] and published in [126]; our presentation
will deviate from both slightly.

Theorem 2.3.7 (Pedersen and Yoder [126]) Let G = 〈{g1, g2, · · · , gi};S〉 be a finitely presented
group, let A = {g±1

j } for 1 ≤ j ≤ i and let A∗ denote the set of all words constructible on the
elements of A. Further, let

C = S ∪ {g±1
i g∓1

i = e; sg±1
i xg∓1

i f = sxf : x ∈ A∗} (2.105)

and let T be a complete TRS for the monoid MC(G) = 〈A ∪ {s, f};C〉. Words u and v are
conjugate in G if and only if suf and svf have identical final forms under T .

Proof. (if) Suppose that suf and svf have identical final forms under T . Since u, v ∈ A∗, they
do not contain s or f . Suppose that suf →∗

T w, then w is equivalent to suf in MC(G) since T
is complete. Since no relation in MC(G) allows the positions of s or f to be changed, w is of the
form w = sw′f and by equivalence we have suf ≈MC sw′f . Since s and f are stationary symbols
and u does not contain them, neither does w′ and we have u ≈MC w′ inMC(G), thus u and w′ are
conjugate in G. Since we have assumed that suf and svf have identical final forms under T , we
have u ≈MC w′ and v ≈MC w′ and since conjugacy is an equivalence relation, we have u ≈MC v.

(only if) Suppose now that u and v are conjugate in G. Then there exists a word w ∈ G, such
that u ≈G wvw−1. Since w ∈ G, we have that w ∈ A∗ and thus the relation swvw−1f ≈MC svf is
contained in MC(G). Since u ≈G wvw−1, we have that suf ≈MC swvw−1f ≈MC svf . Since two
conjugate words in G are equivalent in the monoid MC(G) and T is complete, the final forms of
suf and svf are identical. ✷

Note that theorem 2.3.7 only asserts the existence of a conjugacy solution if the complete
rewriting system T can be found. The new generators s and f are called markers because they
mark the start and finish of a word. They are never contained in the middle of any word and
no relation ever moves them from their positions. Their function is a notational convenience with
which we may easily write down a relation which applies to a whole word and not a proper subword.
The second relation which we have added to S is an example of this.
A conjugacy problem solution can obtained if Knuth-Bendix completion works for the new

monoid. For our present situation, this approach does not, in fact, yield a complete TRS. Below
we shall develop our own method of extending our word problem solution.

2.3.3 The Conjugacy Problem in Bn

Consider the TRS Wn of equation 2.87. We have already shown that Wn is complete and solves
the word problem for Bn. We shall find that it is neither cyclicly terminating nor cyclicly locally
confluent. By a Knuth-Bendix-like completion process, we are able to obtain a system which is
cyclicly locally confluent. This system will be cyclicly terminating if all c-obstructions are removed,
which is possible. The result will be a cyclicly complete system which thus solves the conjugacy
problem in Bn.
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Table 2.2: Cyclic overlaps between rules in Wn.

→ Cyclic Overlap Final Forms

2, 2
n−1∏
i=1

(di,1a1,iSi)
n−1∏
i=1

Si

& Sn−1 = S′
n−1σk; 3 ≤ k < n σ1σkσ1S1

n−2∏
i=2

(di,1a1,iSi) dn−1,1a1,n−1S
′
n−1

3, 3 σiσi−1Pσiσi−1P
′ σi−1σiσi−1Pσi−1P

′

σi−1σiσi−1P
′σi−1P

3, 4 σiσi−1Qσi−1Rσiσi−1P σi−1Qσi−1Rσi−1σiσi−1P
& P = di−2,jP

′ σi−1σiσi−1Qdi−1,jσiR
+P ′

4, 4 σiσi−1Q1σi−1R1σiσi−1Q2σi−1R2 σi−1σiσi−1Q1di−1,jσiR
+
1 Q

′
2σi−1R2

& Q1 = di−2,jQ
′
1; Q2 = di−2,jQ

′
2 σi−1σiσi−1Q2di−1,jσiR

+
2 Q

′
1σi−1R1

In table 2.2, we list all four cyclic overlaps between the rules of Wn and the two final forms
per overlap depending on the chosen rewrite path. Note that all overlaps are critical and that the
cyclic overlap refers to the entire cyclic word.
Consider the TRS Gn below which is understood to contain only global rules for cyclic words,

i.e. the entire word has to be matched to redexes in Gn. The restrictions on the variables are
identical to those of Wn. The ordering <s is the standard shortlex ordering, i.e. words are sorted
lengthwise first and then lexicographically using <b.

Gn = {(1)
n−1∏
i=1

(di,1a1,iSi)→
n−1∏
i=1

Si;

(2) σiσi−1Pσiσi−1P
′ → σi−1σiσi−1Pσi−1P

′ if P <b P
′

or σi−1σiσi−1P
′σi−1P if P ′ ≤b P ;

(3) σiσi−1Qσi−1Rσiσi−1P → σi−1Qσi−1Rσi−1σiσi−1P ;
(4) σiσi−1Q1σi−1R1σiσi−1Q2σi−1R2 →
σi−1σiσi−1Q1di−1,jσiR

+
1 Q

′
2σi−1R2 if R1 <s R2

or σi−1σiσi−1Q2di−1,jσiR
+
2 Q

′
1σi−1R1 if R2 ≤s R1 }

(2.106)

As described in the solution to the word problem, we will regard a cyclic word c(w) as a pair
c(w) = (k, c(ws)). The first entry is an even integer counting the number of copies of ∆2

n in c(w).
The second entry is the rest of the word written in the σi. We shall now present an algorithm for
the conjugacy problem in terms of Wn and Gn. We prove, in a set of lemmas, that this algorithm
solves the conjugacy problem in Bn.

Algorithm 2.3.8 Input: A cyclic braid word c(w). Output: A set of cyclic braid words which
collectively are a unique representative of the conjugacy class of w.

1. Apply rule 1 of Wn as many times as possible.

2. Test if w is splittable, i.e. if it is in the form w = w1w2 where w1 commutes with w2. If it is,
separate w1 and w2 and treat them separately from now on. If not, do nothing. Note that
we are testing the linear word w and not c(w).

3. If applicable, apply any rule in Gn and proceed with step 5. If not continue with the next
step.

4. Apply any of rules 2 to 4, in that order of priority, ofWn exactly once to each of the separated
cyclic braid words, if possible.

5. Go back to step 2 of the algorithm and continue until there is not braid word which may be
split further and no braid word to which any of the rules in Wn and Gn are applicable.
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6. The number k and the set of split braid words are now collectively the unique representative
required.

We note that because of the restrictions on the variable Sn−1, rule 5 of Wn and rule 1 of Gn
are identical. It is obvious from the algorithm that if it cyclicly terminates andWn ∪Gn is cyclicly
confluent, then the conjugacy problem in Bn is solved by it.

Lemma 2.3.9 Algorithm 2.3.8 cyclicly terminates in a time O
(
l5n11

)
, where l is the initial word

length.

Proof. Suppose initially that the word length of w ∈ Bn is l and w contains exactly m inverse
generators. Step 1 of the algorithm applies rule 1 ofWn as many times as possible, which is clearly
m times. After such replacement, the word length of w is now

L(w) = l+mn(n− 1)−m (2.107)

Since all inverse generators are now gone and no rule creates further inverse generators, rule 1
can never be applied again. Note also that no other rule increases the length of the braid word.
Such replacements may be made in O

(
ln2

)
. Steps 2 to 4 of the algorithm are looped now. Since

the total length of the braid words is bounded by equation 2.107, a split may occur only a finite
number of times.
We test if the word w is splittable. There are exactly L(w) words w1 and w2 such that w1w2 = w

and we must test if w1w2 ≈ w2w1 which is a word problem which can be solved in O(L(w)2n4)
according to theorem 2.3.3. In fact there is a solution by Birman [22] with complexity O(L(w)2n)
which is the complexity we shall assume holds here. Thus testing splittability may be done in at
worst O

(
L(w)3n

)
.

Rule 1 of Gn reduces the total length while no rule increases it and thus it may be applied only
a finite number of times. By the same analysis as for the word case, it is bounded by O (l). Rule 2
of Wn is the commutation relation, the possibility of the infinite application of which is explicitly
removed in step 2 of the algorithm. It is at worst a comparison between every generator and so
bounded by O

(
L(w)2

)
. Taken independently, the other rules also terminate as rule 3 of Wn and

rules 2 and 3 of Gn decrease total generator index count and rule 4 ofWn and rule 4 of Gn increase
it. Since total generator index count is bounded from below by L(w) and above by (n − 1)L(w)
the application of these rules must terminate independently. We must show that there can be no
interference between the rules which would give rise to infinite rewriting. Rules 2, 3 and 4 of Gn
require that the entire word contains exactly two σi. If rule 4 can be applied, this number may
increase or stay equal to two. If it increases, the only way to decrease it is to use rule 3 of Wn.
It is obvious from the rules that this process will never lead to the original cyclic word again even
though the number of σi may again reach two.
If rule 4 of Wn is used to raise the number of σi, it may be lowered by using rule 3 of Wn or

rules 2 or 3 of Gn. This process can also never again reach the original word as a local ordering
in the form σi−1σiσi−1 is formed and never undone. The number of applications of all these rules
is clearly bounded by O (L(w)). As the number of times the loop is to be performed is of order
L(w)2 and the worst-case step inside the loop is of order L(w)3n, the whole algorithm runs in
O
(
L(w)5n

)
= O

(
l5n11

)
. ✷

Lemma 2.3.10 Algorithm 2.3.8 is cyclicly confluent.

Proof. By theorem 2.3.1, Wn is confluent and thus contains no critical pairs. Algorithm 2.3.8
uses Gn as well as Wn. By construction, Gn resolves all the cyclic critical pairs of Wn but, as may
be easily verified, introduces no further critical pairs or cyclic critical pairs. By lemma 2.3.6 this
is a necessary and sufficient condition for cyclic local confluence. By lemma 2.3.9, the algorithm
cyclicly terminates and so, by lemma 2.3.5, the algorithm is confluent. ✷

As the algorithm terminates and is confluent, it solves the conjugacy problem in Bn with
computational complexity O

(
l5n11

)
.
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Chapter 3

The Minimum Word Problem

A well-known problem of combinatorial braid theory is the minimization problem: Given a braid
A ∈ Bn find a braid Am such that A ≈ Am and L(Am) ≤ L(A∗) for any braid A∗ ≈ A where L(A)
denotes the word length of the braid A. In this chapter, we prove that this problem is NP-Complete
and we find an algorithm for it.

3.1 Introduction

In the Artin representation of Bn, the number of generators required to write down a braid word,
its length, is equal to the crossing number of the topological braid. In practice, we find that
by moving a few of the strings of the topological braid, its crossing number may be reduced,
making the braid simpler. It would be especially useful to possess a general method to compute
an equivalent braid of minimum crossing number. Apart from many applications, this problem is
well-known in combinatorial braid theory and is of independent mathematical interest.
Given a braid A ∈ Bn in the Artin generators, the question whether there exists an equivalent

braid A′ ∈ Bn of shorter length has been shown to be NP-Complete by Paterson and Razborov
[125]. Not only does this mean that this question is computationally equivalent to all other NP-
Complete problems, it also means that (unless P = NP, the meaning of which will become apparent
in our review of NP-Completeness) any algorithm which answers the question would execute in
exponential-time in n. Since Paterson and Razborov’s result refers to the minimization problem
for general n, we ask whether it is also an NP-complete question for particular n. This question
is explicitly asked as open question 9.5.6 on page 209 of [59] and it seems to have been negatively
answered in an unpublished preprint by Tatsuoka five years earlier but we were unable to obtain
it [146].
In proving the NP-Completeness of the problem, Paterson and Razborov showed that the

problem can be reduced to a known NP-Complete problem. This does not however provide a
usable algorithm. For 3-braids, a linear complexity algorithm has been found [17] but no general
algorithm for n > 3 exists. A minimization algorithm in the band-generator presentation of the
braids groups has been found for n = 3, 4 but the length of the braid in this presentation is not
equal to the crossing number [159] [89]. It is untypical of a group for which the word problem is
solvable that no unique normal form of minimal length in some naturally arising presentation exists
for the braid groups. A unique normal form of minimal length in certain natural presentations of
free groups, HNN-extensions and free products exists, for example.
After a little experimentation, it is clear that a braid must, in general, be increased in length

before it may be reduced to minimum length algebraically. An example of such a braid is given
in [17]. We show that a certain readily obtained braid provides an upper bound for this necessary
increase in length and prove several properties of this braid. We explicitly construct a set of words
which must be searched for a certain property in order to obtain a minimal length representative
of any braid. This constitutes an algorithm to solve the minimization problem. Since the set of
words which must be searched is, in the worst case, exponential in size, the algorithm takes an
exponential amount of time to complete.
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3.2 NP-Completeness

First, we review the basic ideas and results of the theory of NP-Completeness and then we shall
prove that a particular problem, known as SORTING DOES NOT MINIMALLY PARTITION, is
NP-Complete.

3.2.1 A Review of NP-Completeness

In this section, we shall provide a very concise review of the main results of the theory of NP-
Completeness (NPC) and complexity in general. For reasons of space, this review will be informal.
The full details and all the proofs for the statements we make herein are in [63].
When concerned with practically solving combinatorial problems, we often wish to use mechan-

ical aid and the question of resources arises. It is, in general, straightforward to give a natural
measure of the input size S of a problem Π (any graph problem input is usually measured by the
number of edges and vertices in the input graph, for example) and we analyze an algorithm which
solves our combinatorial problem in order to obtain a function f(S) which gives the maximum
amount of computing time required to solve a problem of size S (thus f(S) is a worst-case measure
of time). By the (worst-case) complexity C(Π) of the problem Π we mean the asymptotic behavior
of f(S) as S → ∞. An algorithm is linear when f(S) → S and quadratic when f(S) → S2 as
S → ∞. We consider an algorithm to be efficient if and only if C(Π) is bounded from above by a
polynomial function of S and inefficient or intractable otherwise. Apart from desiring as quick an
algorithm as possible for Π, we wish to know in general whether an efficient algorithm exists.
It is customary to refer to the totality of information necessary to be specified for a particular

problem Π before it can be solved as an instance of Π. A decision problem Π (intuitively a question
with ”yes” or ”no” answers) consists of two sets DΠ of possible instances and YΠ ⊆ DΠ of yes-
instances. The problem consists of deciding whether the particular instance specified lies in YΠ.
The theory of NPC deals primarily with decision problems but may be extended to more general
types of problems.
Computation may be modeled in a variety of ways all of which can be simulated in terms of

each other; the most frequently used model is the Turing machine, which we shall use here. A
deterministic Turing machine (DTM) is a machine which possess a finite-state control, a read-write
control and an infinite length of tape (there exist models with more than one tape but we shall
not need them). The finite-state control will tell the machine what to read or write using the
read-write head on the infinite tape on which it does all its work. A program for a DTM consists
of an alphabet of symbols to be used for reading and writing (and specifying the input), a finite
set of states for the DTM to be in and a transition function. The states include two distinguished
states Ty and Tn and the program will halt if and only if either of these is reached; Ty will be the
”yes” and Tn the ”no” state which provide the answer to the problem Π. The transition function
prescribes a new state for each present state as a function of the possible input. Thus a DTM
supplied with a program and some input will traverse its states in accordance with the transition
function and its input and will, in some cases, reach either Ty or Tn. The question whether it
will ever reach either Ty or Tn is known as Turing’s Halting Problem and can not, in general, be
answered for all inputs.
The number of symbols on the tape which describes the input will be our abstract measure

of input size S and the number of evaluations of the transition function, to leading order, as a
function of S will constitute the complexity C(Π) of the program. If C(Π) is bounded from above by
a polynomial function of S, then the Π is said to have polynomial-time complexity. The complexity
class P is defined as the set of all problems for which a DTM program with polynomial-time
complexity exists.
It has been observed that verifying that a suggested solution is true is, in many cases, easier

than finding the solution. This idea gives rise to the concept of a Non-deterministic Turing Machine
(NDTM) which consists of a DTM plus a guessing control. The guessing control guesses a solution
and the DTM checks it. A NDTM program is polynomial-time if the checking stage has polynomial
complexity in S. The complexity class NP is defined as the class of all problems for which a
polynomial-time NDTM program exists. Clearly P ⊆ NP. Whether or not this inclusion is strict
has been the topic of considerable discussion. It is believed by most in the area that P ⊂ NP,
however no proof of this has been found and a convincing though informal argument based on
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empirical evidence can be made for both positions.
We define a problem Π to be polynomially transformable into a problem Π′ (denoted Π ∝ Π′) if

and only if there exists a function f which takes instances I of Π and returns instances f(I) of Π′

such that: (i) f(I) ∈ YΠ′ if and only if I ∈ YΠ and (ii) there exists a polynomial-time DTM for f .
Note that Π ∝ Π′ does not necessarily imply Π′ ∝ Π. In fact, the relation ∝ defines a partial order
on the elements of NP. Using this, we may define the class NPC to be the set of problems Π such
that: (i) Π ∈ NP and (ii) for all other problems Π′ ∈ NP, we have Π′ ∝ Π. Thus the NPC problems
are the hardest in NP with respect to the partial order defined by polynomial transformability. By
construction of the class NPC, all NPC problems are polynomially transformable to all other NPC
problems. That means that a polynomial-time algorithm for one NPC problem would immediately
result in polynomial-time algorithms for all NPC problems and by extention all NP problems.
That is, it would prove that NP = P.
It is not immediately obvious that there are any NPC problems but Cook proved that a problem

known as satisfiability (SAT) is in NPC. This result is important as we note that this means that
we can prove that a problem Π ∈ NPC if and only if Π ∈ NP and some known NPC (such as SAT)
problem transforms to Π. This is a favorite method to prove that a problem is NPC.

3.2.2 Practicality of the Theory of NP-Completeness

There has been considerable controversy over the practical implications of the statement ”problem
Π is NPC.” While many firm believers in P �= NP insist that this means Π is intractable and
should be regarded as practically unsolvable, many disagree with this view. If we are actually
concerned about solving Π in practice, we wish to know how long the solution will take in terms of
real time. In many situations we are concerned with only a few special cases or statistical results
(i.e. the average case) and so worst-case complexity or general statements about intractability are
not specific enough to tell us whether we can solve a particular instance of Π. The original NPC
problem of satisfiability for example can be solved with an algorithm of exponential worst-case
complexity which however runs very quickly for the average case. This seems to be true for many
NPC problems and bounds on what “average” means and how quickly the algorithms should run
can probably be obtained using the methods described for the traveling salesman problem in [73].
It should be noted that it is, in general, impossible to tell a priori whether a given instance is
sufficiently average to be solved quickly.
In this vein, the theories of approximation and random algorithms have arisen. If the exact

solution to our specific instance does in fact take too long, then we are perhaps satisfied with an
answer which is almost a solution (an approximation algorithm) or with an answer which is likely
to be a solution with a probability very close to one (a random algorithm). Furthermore, a proof
that Π is NPC does not, in general, provide a usable algorithm for Π. So if we wish to actually
solve Π we must look beyond the proof of its NP-Completeness and make use of problem-specific
features.
We prove that Π is NPC by reduction from a known NPC problem Π′. Even though, we may

have good approximation algorithms and knowledge of the average case for Π′, this does not trans-
late to Π, in general. Which instances are average appears to be problem specific; approximations
and random methods appear to have to make use of special features of the specific problem. More-
over, even if the algorithm has exponential complexity, as long as the actual time taken is relatively
small, we may still be able to use such an algorithm for relatively small instances without practical
difficulties. All this hints that the theory of NP-Completeness may not provide a very useful guide
for the practical solution of an NPC problem other than giving a convincing argument (as long as
P �= NP is not proven or disproven) that the worst-case necessarily has exponential complexity.
Many problems of practical significance are in NPC. While most people assume that NP �= P,

if a counterexample were ever found, the practical importance of that example would be great.
It would, however not lead to an immediate revolution of practical computation because the tree
of polynomial transformations between the NPC problems is so complex and frequently inefficient
that this one example would not provide a practical polynomial-time algorithm to solve other NPC
problems without considerable extra work. From a practical point of view, an algorithm which
goes as n10 may not be any better than one which goes as 2n, it all depends on the problem and
the actual resources required and available.
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3.2.3 Sorting Does Not Minimally Partition

Suppose we have a set Nr = {1, 2, · · · , r}, then the set Nm
r is the set of all words on the letters

Nr of length m and N∗
r =

⋃
mNm

r . We define the number of inversions inv(q, π) of a word
q = q1q2 · · · qm ∈ Nm

r with respect to a permutation π on Nr to be the number of adjacent letter
interchanges necessary to sort the letters of the word q with respect to π. For example, suppose
r = 4, π = [2, 1, 4, 3] and q = 432413, then we want to sort q into q′ = 214433 which requires
inv(q, π) = 6 adjacent letter interchanges. Note that whatever π, inv(q, π) ≤ m(m − 1)/2. The
identity permutation is denoted by ι.

SORTING DOES NOT MINIMALLY PARTITION (SNMP)
INSTANCE: q ∈ N∗

r .
QUESTION: Is there a permutation π of Nr such that inv(q, π) < inv(q, ι)?

SNMP was first shown to be NPC by Paterson and Razborov [125] but we give a different proof
here. As mentioned above, the book [63] is considered the standard reference on the theory of
NPC. Amongst a solid review of the field, it contains a list of several hundred NPC problems. We
shall consider the problems in that list well-known and will not give proof that they are NPC. The
problem GROUPING BY SWAPPING (GBS) (problem SR21 in [63], p. 231) is one of these and we
shall prove SNMP to be NPC by restricting GBS. (GBS is proved to be NPC by a transformation
from FEEDBACK EDGE SET (GT8, p.192)→ VERTEX COVER (GT1, p. 190)→ 3SAT (LO2,
p. 259)→ SAT (LO1, p. 259) which is the original NPC problem. The references in parenthesis are
to [63].) To be as clear as possible, we quote GBS exactly as it appears in [63], modulo notation.

GROUPING BY SWAPPING (GBS)
INSTANCE: Finite alphabet Nr, string q ∈ N∗

r , and a positive integer K.
QUESTION: Is there a sequence of K or fewer adjacent symbol interchanges that converts q
into a string s in which all occurences of each symbol a ∈ Nr are in a single block, i.e. s has no
subsequences of the form aba for a, b ∈ Nr and a �= b?

Theorem 3.2.1 SNMP is in NPC.

Proof. Note that the string s which has no subsequences of the form aba for a, b ∈ Nr such that
a �= b is sorted with respect to some permutation π on Nr. Thus there exists a sequence of K or
fewer adjacent symbol interchanges if and only if there exists a permutation π on Nr such that
inv(q, π) ≤ K. If we put K = inv(q, ι) − 1, an instance of GBS becomes an instance of SNMP.
This is known as a proof by restriction (see [63]) as we have shown that a specific type of instance
of GBS is an instance of SNMP; it clearly follows that SNMP is in NPC since GBS is. ✷

3.3 Non-Minimal Braids is NP-Complete

In this section, we state formally the problem NON-MINIMAL BRAIDS (NMB) and show that it
is NP-Complete. Paterson and Razborov first proved this result by a reduction of a subproblem of
NMB to SNMP. We shall follow their basic ideas but will present a substantially different proof.
We do not assume that the reader is familiar with their proof and our discussion is completely
independent.

3.3.1 Statement of the Problem

NON-MINIMAL BRAIDS (NMB)
INSTANCE: A braid group Bn and a word A ∈ Bn.
QUESTION: Is there a word A′ ∈ Bn such that A′ ≈ A and L(A′) < L(A)?

Clearly NMB can be answered by an algorithm which finds a minimum length representative
Am of the equivalence class of A by comparing L(Am) and L(A). We define this problem formally,
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MINIMAL EQUIVALENT BRAID (MEB)
INSTANCE: A braid group Bn and a word A ∈ Bn.
SEARCH: Find a word Am ≈ A such that L(Am) ≤ L(A′) for any A′ ∈ Bn such that A′ ≈ A.

The class of problems of which MEB is a member is that of search problems. Search problems
Π differ from decision problems mainly in that they consist of a set DΠ of possible instances and
a set SΠ of solutions. For each instance I ∈ DΠ, an algorithm which solves Π returns either “no”
if SΠ = ∅ or some solution s ∈ SΠ. The notion of NP-Completeness can be extended to search
problems (see [63], p. 110) and by this extension it is clear that the search problem MEB is in
NPC if and only if the decision problem NMB is in NPC.
We shall show that for a certain class of braids, NMB is in NPC. First, we construct this class,

then we prove some of its properties and finally show that the question NMB for a member of
this class can be reduced to SNMP. This shows that NMB is in NPC because it is in NP and a
subproblem is in NPC.

3.3.2 The Weft Braids

Consider the identity braid (no crossings) in the braid group Bcm+1 where we have partitioned the
cm + 1 strings into m + 1 categories. The first category is constituted only by the braid on the
far left and each other category is made up of exactly the next c strings to the right of the last
category. Choose an integer r < cm+ 1 and assign a label to the m categories with c strings from
the set Nr = {1, 2, · · · , r}. This labeling induces a string V on N cm

r . We denote the number of
times label i occurs within V by #(V, i). We shall refer to the string on the far left as the weft (the
weft is the string which weaves between the threads stretched lengthwise in a loom while making
fabric), the categories bearing label i as i-cables and the strings in a particular i-cable as i-wires.
In what follows the cables will act as units; that is, there will be no crossings between wires making
up a particular cable. Choose a permutation π on Nr and construct the braid Vπ from V and π by
bringing all the π(1)-cables to the left of all the other cables except the weft. Then do the same
for the π(2)-cables and so on, so that the final braid will have its cable labels sorted according to
π. The cable currently brought to the front shall under-cross any cable in its path if and only if its
label is lower than that cable. This defines the braid Vπ exactly. Given a labeling V , the number
of Artin braids Vπ this can generate is equal to the number of permutations on r symbols, r!. If
c = 1, m = 5 and r = 3, the labeling V = 21312 can generate 6 Artin braids, two of which are
Vι = σ2σ4σ3σ5 and V[2,1,3] = σ−1

5 σ4σ
−1
3 σ5. Note that the word length L(Vπ) of the Artin braid Vπ

is L(Vπ) = inv(V, π)c2.
In addition to the choices made above, choose two further integer parameters t, s. A weft

braid Uπ ∈ Wn(r, t, s, c) on n strings with parameters r, t, s, c induced by a permutation π on Nr

is constructed by first constructing Vπ for some labeling V as described above. Then the weft
over-crosses all cables until it is just to the right of all the π(r)-cables, it then passes underneath
all the π(r)-cables (which are now in a block) and finally passes over all of them and under all of
them a further t− 1 times (the weft has encircled the π(r) block of cables t times). The weft then
continues to the π(r− 1)-cables and so on to do the same under-crossing cables if it is going to the
left and over-crossing otherwise. The entire process of the weft encircling the blocks is repeated s
times and Uπ terminates in V −1

π . We refer to braids in the above form as being in weft form.
Next, we prove three lemmas which will be used to show that finding minimal weft braids is in

NPC. The first lemma was assumed by Paterson and Razborov as obvious, we shall prove it here.
The other two lemmas are proven differently here than they were by Paterson and Razborov [125].

Lemma 3.3.1 Uπ ≈ Uπ′ for any two weft braids Uπ, Uπ′ ∈ Wn(r, t, s, c) defined by the same
labeling V .

Proof. Given the set of weft braidsWn(r, t, s, c), choose a word V ∈ N cm
r wherem = (n−1)/c and

two permutations π and π′ on Nr. Construct the two weft braids in weft form Uπ and Uπ′ defined
by the labeling V and the permutations π and π′ respectively. We wish to show that Uπ ≈ Uπ′ .
Note that we may set π′ = ι without loss of generality.
Consider Uι and focus attention upon the (adjacent) collections of i and (i + 1)-cables at the

beginning of the center braid, i.e. just after Vι. Suppose we were to interchange their positions by
pulling the i-cables under the (i + 1)-cables while keeping the rest of the braid stationary. This
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generates a number of new crossings of the form WW−1. Move the second half of these crossings,
W−1, to the end of the center braid in order to conform with the definition of the weft form then
the whole braid will be VιWCW−1V −1

ι where C is the center braid. This motion will clearly alter
the braid into exactly that form in which it would have been if the permutation had not been
ι = [1, 2, 3, · · · , r] but [1, 2, · · · , i − 1, i + 1, i, i + 2, · · · , r]. In the same way, we may switch the
order of any two adjacent pairs of labels in the permutation. Since any permutation π on Nr can
be generated by a finite number of adjacent symbol interchanges in the identity permutation ι on
Nr, we can generate all the weft braids in weft form (defined on the same initial labeling V ) Uπ
from Uι by braid group motions which proves the lemma. ✷

As Uπ is independent of π, we shall omit the permutation π when no confusion can arise.

Lemma 3.3.2 (Paterson and Razborov [125]) The length of a weft braid in weft form Uπ ∈
Wn(r, t, s, c) with n = 1 + cm defined by the labeling V satisfies

2inv(V, π)c2 + 2tmcs ≤ L(Uπ) ≤ 2inv(V, π)c2 + (r + 1 + 2t)mcs (3.1)

and in particular L(Uι) = 2inv(V, ι)c2 + 2tmcs.

Proof. By construction L(Vπ) = L(V −1
π ) = inv(V, π)c2. A single coil around the strings of label

i has 2c#(V, i) crossings. If π = ι, then the weft over-crosses all cables first using cm crossings.
It then under-crosses c#(V, r) times and coils t − 1 times using 2c(t − 1)#(V, r) crossings. The
(r − 1)-cables are just beside the r-cables and so no further crossings are needed, we under-cross
them and coil again t− 1 times. So in the case that π = ι, we use exactly

L(Uι) = 2inv(V, ι)c2 + 2tmcs (3.2)

crossings. For the case π = ι, the non-coiling crossings of the weft with the wires can be viewed as
exactly one more coiling with each of the blocks of wires since this would give exactly the remaining
number of crossings and geometrically looks like it. By construction of the general case, we require
at least 2tmcs crossings for the center part of the braid for any other permutation π, this gives us
the lower limit.
For π �= ι we require these t coils plus a number of crossings of the weft and the wires in order

to sort them in the order prescribed in the construction above. There are r different blocks of
cables and m cables in total. Thus the maximum number of crossings of the weft with a cable in
one stage of the construction is clearly (r + 1)m but there are c wires per cable and s identical
construction stages and so the total number is (r + 1)mcs. This must be added to the minimum
number of required crossings and gives us the upper limit in the lemma. ✷

Lemma 3.3.3 (Paterson and Razborov [125]) If U ∈ Wn(r, t, s, c) obeys L(U) ≤ L(U ′) for any
U ′ ∈Wn(r, t, s, c) such that U ≈ U ′, then

L(U) ≥ 2inv(V, π)c2 + 2tmcs (3.3)

for some permutation π.

Proof. Construct the weft braid Uπ for some permutation π. It has 2inv(V, π)c2 crossings between
wires of different labels. Wires of the same label never cross. Half of these crossings Vπ are the
inverses of the other half V −1

π but they are separated by the center braid in which the weft coils
around all the cables of equal label. Obviously, a crossing between two particular strings in a braid
can be removed if and only if these two strings cross in the opposite manner somewhere else in the
braid and these two crossings can be moved adjacent to each other.
Clearly the crossings on either side of the center braid can not be moved to the other side

because the coiling of the weft prevents them from being unraveled in this way. Since the cables do
not cross each other in the center braid, any weft braid has at least 2inv(V, π)c2 crossings between
the wires for some permutation π.
The center braid consists of crossings between the weft and the wires and the weft crosses

nothing outside of the center. Thus the crossings in the center braid may only be removed if they
can be canceled within the center braid.

Patrick D. Bangert



3.4 Minimal Length Words 47

By construction of the center braid in s levels, it is clear that no crossings may be removed
between levels. It is also clear that no crossings may be removed within a particular coil. Thus the
only way to reduce the number of crossings of the center braid is to change the order in which the
coils in each level are made. Since we have s levels of t coils for each collection of #(V, i) i-cables
of c wires each, this takes at least 2tmcs crossings (since there are a total of m cables) and the
lemma is proved. ✷

3.3.3 Minimal Weft Braids

We ask under which conditions a weft braid U ∈ Wn(r, t, s, c) is minimal in length over its equiv-
alence class in Wn(r, t, s, c). The theorem which gives the condition was proved by Paterson and
Razborov but we shall give a different proof here.

Theorem 3.3.4 (Paterson and Razborov [125]) A weft braid U ∈ Wn(r, t, s, c) in weft form sat-
isfies L(U) ≤ L(U ′) for all U ′ ∈ Wn(r, t, s, c) such that U ′ ≈ U if and only if there exists no
permutation π �= ι such that inv(V, π) < inv(V, ι).

Proof. (only if) Suppose there exists a permutation π �= ι such that inv(V, π) < inv(V, ι). Choose
the number of wires per cable c = rms. Because of lemma 3.3.1, we have Uπ ≈ Uι and due to
lemma 3.3.2 we have

L(Uπ) ≤ 2inv(V, π)c2 + (r + 1 + 2t)mcs < 2inv(V, ι)c2 + 2tmcs = L(Uι) (3.4)

and Uι is not of minimal length.
(if) Suppose that U is minimal and that L(U) < L(Uι). Then by lemma 3.3.3, we have

2inv(V, π)c2 + 2tmcs ≤ L(U) < L(Uι) = 2inv(V, ι)c2 + 2tmcs (3.5)

and so inv(V, π) < inv(V, ι) for some permutation π. ✷

Now we show that NMB ∈ NPC using theorem 3.3.4.

Theorem 3.3.5 NMB is in NPC.

Proof. NMB is in NP because the word problem in Bn may be solved in polynomial-time [22].
That is, given a braid, it may be checked in polynomial-time whether it is equivalent to the input
braid and if it is of shorter length.
An instance of NMB is specified by a braid group Bn and a word A ∈ Bn. Suppose now that

A ∈ Wn(r, t, s, c). A subproblem of NMB asks whether there exists a weft braid A′ ∈Wn(r, t, s, c)
such that A′ ≈ A and L(A′) < L(A). Theorem 3.3.4 establishes that this is true if and only if
there exists a permutation π �= ι such that inv(V, π) < inv(V, ι) where V is the labeling which
defines A in weft form. The question, given V ∈ N∗

r , whether such a permutation exists is the
known NPC problem SNMP. Thus NMB contains SNMP as a subproblem. Since NMP ∈ NP and
a subproblem of NMB is in NPC, we have that NMB ∈ NPC. ✷

Even though NMB is an NPC problem, we shall look for an algorithm for it.

3.4 Minimal Length Words

Denote by Am any braid which satisfies Am ≈ A and L(Am) ≤ L(A∗) for all braids A∗ ≈ A. We
now prove a basic lemma which connects Amax and Am. Recall that Amax = ∆−s(A)

n A′ where
s(A) is the number of inverse generators in A and A′ is positive.
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3.4.1 Minimal Braids Without Increasing Length

Theorem 3.4.1 For any braid A, it is possible to obtain Am from Amax by operations which
monotonically decrease or keep constant the length of the braid.

Proof. By construction Am ≈ Amax ≈ A and Amax and A are at least as long Am. Exponent
sum is an equivalence class invariant so that s(Am) ≤ s(A). Replace each inverse generator in Am

with the braid given in proposition 1.3.1 and then use equation (1.12) to bring all the fundamental
braids to the front to obtain the braid

Ammax = ∆−s(Am)
n A′

m (3.6)
≈ ∆−s(Am)

n ∆s(Am)−s(A)
n ∆s(A)−s(Am)

n A′
m (3.7)

≈ ∆−s(A)
n ∆s(A)−s(Am)

n A′
m (3.8)

But Amax = ∆
−s(A)
n A′ and since the braid groups are left-cancelative [64], we have that

∆s(A)−s(Am)
n A′

m ≈ A′ (3.9)

with both words positive. Since positive words are positively equal [64], there exists a sequence of
braids Bi for 0 ≤ i ≤ q with B0 = A′, Bq = ∆

s(A)−s(Am)
n A′

m, Bj and Bj+1 different by a single
application of the braid group’s defining relations and Bi positive for all i. Since exponent sum is
an equivalence class invariant, L(Bi) = L(A′) for all i.
From Amax we may thus reach the form of Ammax in equation (3.8) keeping the length of the

braid constant. From this form, we may reach Am by operations which monotonically decrease or
keep constant the length of the braid. Thus there exists a sequence of braids Wi for 1 ≤ i ≤ p
with W0 = Amax, Wp = Am, Wj and Wj+1 different by a single application of the braid group’s
defining relations and L(Wj+1) ≤ L(Wj), which proves the lemma. ✷

Lemma 3.4.1 basically establishes that we may reach a minimum length representative from
Amax by rearranging and canceling generators only; it thus, in principle, removes the difficulty we
pointed out in the introduction of occasionally having to increase the length before being able to
decrease it to an absolute minimum.

3.4.2 The Diagram of a Braid

Garside introduced the notion of a diagram of a positive braid in his seminal paper on the braid
groups [64]. We present an extension to his construction which draws the diagram of any braid
word. The diagram is a list of all those braid words which may be obtained from the given word
by rearranging only.

Algorithm 3.4.2 Input: A braid word A. Output: A list D(A) of all braid words B which may
be obtained from A by rearranging of generators only.

1. Define the diagram of zeroth order as the set D0(A) = {A}.

2. The set Di(A) is obtained from the set Di−1(A) by the following procedure:

(a) Fix attention on a particular member α of Di−1(A). We read α from left to right and
decide at each position whether we may apply any of the moves in equations (3.10) to
(3.13).

σiσj ↔ σjσi for |i− j| > 1 (3.10)
σiσi+1σi ↔ σi+1σiσi+1 (3.11)
σiσ

−1
i ↔ σ−1

i σi (3.12)
σiσ

−1
i σj ↔ σjσiσ

−1
i (3.13)

(b) If we may, we apply it and store the resultant braid word β in Di(A) if and only if β is
not already contained in Dj(A) for 0 ≤ j ≤ i.
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(c) We continue to read across α until we have considered all braid words which may be
reached from α by a single application of the moves in equations (3.10) to (3.13).

(d) Apply steps (a) through (c) for every braid inDi−1(A). IfDi(A) = ∅, then the algorithm
is done.

3. The diagram D(A) of A is the union of all the Di(A),

D(A) = D0(A)
⋃

D1(A)
⋃
· · ·
⋃

Dm(A) (3.14)

We show the correctness and termination of this algorithm.

Lemma 3.4.3 Algorithm 3.4.2 terminates for every A and succeeds in listing all braid words B
which may be obtained from A by rearranging of generators only, that is using the braid group
relations without introducing or removing any generators.

Proof. D0(A) is, by definition, finite. It is obvious that for any braid word of finite length, the
moves in equations (3.10) to (3.13) may be applied a finite number of times. Thus, by induction,
every Di(A) is finite. The number of distinct braid words of a given finite length is finite and since
the Di(A) are, by construction, non-overlapping, their union must be finite. Thus there exists an
m such that Dm+k(A) = ∅ for every k > 0. Thus the algorithm terminates for every A.
The moves listed in equations (3.10) to (3.13) exhaust all possibilities allowed in the braid

group under the stipulation that no generators must be removed from or introduced into the word.
Thus each word which may be reached from A by rearrangement of generators will eventually be
reached by algorithm 3.4.2 and so the algorithm succeeds in listing all the required braid words.
✷

Lemma 3.4.1 gives the following corollary.

Corollary 3.4.4 D(Amax) contains a braid of the form EAm for E ≈ e, the identity in Bn.

Proof. By construction D(Amax) contains all braid words equivalent to Amax by rearranging only.
By lemma 3.4.1, Am can be obtained by a sequence of operations which keeps the length constant
or decreases it. Each operation which decreases the length does so by eliminating a subword like
ei = σiσ

−1
i ≈ σ−1

i σi.
Since for all i ei ≈ e, the identity in Bn, we have

eiσ
±1
j ≈ σ±1

j ei, eiej ≈ ejei (3.15)

for any i and j.
Let us now agree to construct the aforementioned sequence of words without eliminating the

subwords ei but using equation (3.15) to bring them all to the left of the word. At the end, we
will obtain a word of the form A∗ = EAm where E ≈ e is a braid consisting of all these subwords
ei. The most general form of E is

E = eq11 eq22 · · · eqn−1
n−1 (3.16)

with qi ≥ 0 for all i. So if we could extract E from Amax, we would, in the process, obtain
Am. Since the form EAm is obtained by rearrangements only, L(E) ≤ L(A∗) = L(Amax). This
indicates that

∑n−1
i=1 2qi ≤ L(Amax). ✷

Given a braid A, we thus find Am by constructing the diagram D(Amax) and selecting the word
with the largest number of cancelation pairs such as σiσ−1

i . Clearly there will be more than one
braid word for the same number of cancelation pairs. We may agree to choose the least braid word
lexicographically for definiteness. It is obvious from the construction that this will be a unique
form of minimal length for the braid A. We thus have an algorithm to find Am for any A, it is
regrettable that the diagram D(Amax) is, by construction, very large. Two questions are left to
ask: Can we make the result stronger and how large is a typical diagram? These questions will be
tackled in the next two sections.
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3.4.3 Counterexamples

In theorem 3.4.1 we achieved an upper bound for the necessary increase in length of a braid before
it may be reduced to a minimum length. One would like to simplify the result somewhat but we
shall show in this section that the two straightforward attempts to simplify or strengthen theorem
3.4.1 are doomed to failure. First we show that we may not, in general, shorten Amax to the
Garside normal form.

Lemma 3.4.5 It is not, in general, possible to obtain Am from G(A), the Garside normal form
of A, by operations which monotonically decrease or keep constant the length of the braid.

Proof. Consider the braid α = ∆−2
3 ∆3σ

3
1 . The Garside normal form of α is G(α) = ∆−1

3 σ3
1

and the shortest braid which can be obtained from G(α) by rearranging and canceling only is
α′ = σ−1

1 σ−1
2 σ2

1 . The original form of α is the same as αmax and we make the following moves on
it

α = ∆−2
3 ∆3σ

3
1 (3.17)

≈ σ−1
2 σ−1

1 σ−1
2 σ−1

1 σ−1
2 σ−1

2 σ2σ2∆3σ1 (3.18)
≈ σ−1

2 ∆−1
3 σ−2

2 σ2
2∆3σ1 (3.19)

≈ σ−1
2 σ1 (3.20)

which is shorter than α′ and is in fact the minimal length of this 3-braid. This provides an
example for which the minimal length is not obtainable from the Garside normal form of the braid
by rearranging and canceling only and thus proves the lemma. ✷

One may think that it would be sufficient to list the diagram of the negative and positive
subbraids of Amax and search for a maximal length subbraid which is common to the end of the
first and the beginning of the second diagram but this is not true as the following lemma shows.

Lemma 3.4.6 There does not exist an Am in the form A1A2 with A1 negative and A2 positive
for every A.

Proof. Consider the braid A = σ−1
1 σ2σ

−1
1 , the Garside normal form of which is G(A) =

∆−2
3 σ2σ1σ1σ1σ2. In fact, A is already minimal as can be seen by Berger’s algorithm [17] or

by using the above procedures. We wish to show that there does not exist another braid equivalent
to A of length three in the form A1A2 with A1 negative and A2 positive. Since exponent sum is
a conjugacy class invariant, we need only check eight cases. Below we list the eight 3-braids of
length three and exponent sum -1 in the required form and their Garside normal forms.

σ−1
1 σ−1

1 σ1 → ∆−1
3 σ1σ2 (3.21)

σ−1
1 σ−1

1 σ2 → ∆−2
3 σ2σ1σ1σ2σ2 (3.22)

σ−1
1 σ−1

2 σ1 → ∆−1
3 σ1σ1 (3.23)

σ−1
1 σ−1

2 σ2 → ∆−1
3 σ1σ2 (3.24)

σ−1
2 σ−1

1 σ1 → ∆−1
3 σ2σ1 (3.25)

σ−1
2 σ−1

1 σ2 → ∆−1
3 σ2σ2 (3.26)

σ−1
2 σ−1

2 σ1 → ∆−2
3 σ1σ2σ2σ1σ1 (3.27)

σ−1
2 σ−1

2 σ2 → ∆−1
3 σ2σ1 (3.28)

Since the Garside normal form solves the word problem and none of the above Garside normal
forms are identical to G(A), the braid A does not possess a minimal length representative in the
required form. ✷
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Table 3.1: The Size of Diagrams of Fundamental Words

n p |D (∆p
n)| max. i

3 1 2 1
3 2 8 2
3 3 38 5
3 4 196 8
3 5 1062 13
3 6 5948 18
3 7 34120 25
4 1 16 7
4 2 1654 15
5 1 768 25

3.5 The Size of Diagrams

Let a be a n-braid of length L with diagram D(a). Consider the braid a′ = aσiσ
−1
i for some

1 ≤ i < n. We are concerned with the size of D(a′) in terms of the size of D(a). For each member
of D(a), the cancelation pair σiσ−1

i may appear in any place in both possible orders (σiσ−1
i and

σ−1
i σi), so in 2(L + 1) positions. There may be further moves possible by use of the braid group
relations but the number of these are clearly bounded by a function linear in L. So the diagram
of a word will increase in size by a factor linear in its length for each possible cancelation pair.
Given a random positive n-braid a of length L, how many members will D(a) have, on average?
We conjecture that

Conjecture 3.5.1 For any braid a ∈ Bn of length L, we have that |D(a)| ≤ |D(∆p
n)| with p =

'2L/(n(n− 1))(.

Conjecture 3.5.1 would provide an upper bound for the size of the diagram of any word in terms
of the diagrams of the diagrams of ∆p

n which topogically are a series of p half-twists of the braid
strings about the vertical axis. In extensive computer simulations, the conjecture was checked and
seems to hold. What it seems to indicate is that the half-twist has the most topological freedom
for its length and number of strings under the constraint that the crossing number must be kept
constant. This is quite intuitive, yet the conjecture seems to be difficult to prove.
We have investigated the diagrams of several ∆p

n for their size and for the distribution of braids
over the subdiagrams at each stage of the construction in algorithm 3.4.2. In table 3.1 we list the
size of the diagram and maximal subdiagram index for p half-twists on n strings.
We conclude that the diagram of a typical braid word grows exponentially with its length

and braid index and thus our method of finding the minimal length braid word equivalent to a
given braid has exponential complexity. This is not surprising as we showed that the problem is
NP-Complete. We shall give a heuristic algorithm and other methods in the next chapter. The
properties of the braid groups that made the above solution possible are: (i) It is possible to write
all inverse generators as products of the generator of the center and a positive word, (ii) the defining
relations relate positive words only and (iii) the braid groups are right and left-cancellative. It is
likely that any group which has these properties, has an analog of the Garside normal form and
has a solution to the minimum word problem similar to the one above.
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Chapter 4

Minimal Words via Elastic
Relaxation

In this chapter, we investigate several different approaches to obtain minimal configurations: we
employ three different relaxation techniques and compare these with each other and with an al-
gebraic heuristic algorithm, in terms of minimization (of energy and crossing number) and time
efficiency. By energy we mean total string length of the braid. It is found that more than half
of the crossings of a sufficiently large braid (in terms of crossing number and number of strings)
are redundant. We analyze the different methods and say in what circumstances which method is
to be favored and conclude that minimum braid energy and minimum braid crossing number are
substantially different measures of topological complexity for braids.
The main purpose of this chapter is to propose an efficient tool for finding minimal braid

configurations. With this in mind, we first demonstrate how to generate random braids both
algebraically and geometrically and how to convert between them in §2. In §3 and §4, we introduce
the forces which will minimize the crossing number and the elastic energy respectively. An algebraic
heuristic minimization is given in §5 and the results of computational experiments of all approaches
are discussed in §6 together with theoretical comparisons. We conclude in §7.

4.1 Introduction

Topological constraints appear in many complex systems. In biology the amount of twisting and
knotting of DNA molecules can affect molecular interactions and dynamics [90]. In polymer physics
the degree of entanglement of the polymer filaments helps to determine the elastic properties of
the polymer [6]. In astrophysics, applications involve the behavior of magnetic fields (such as those
found in stars and accretion disks) with complex topologies [123, 16, 17, 36, 124]. In dynamical
systems theory, the time history of the system can be represented by a set of braided particle
orbits; the topology of the braid reflects qualitative aspects of the dynamics [46, 34, 108, 113].
In turbulence theory the degree of entanglement of the vortex lines provides a statistical measure
of flow properties; this measure is distinguished from most others used in turbulence by being
based on the flow in real space rather than on the spectral transform of the flow in Fourier space.
In statistical mechanics, braid and knot theory has significantly contributed to exactly solvable
models via knot polynomials, for example [152]. Random knotting, as opposed to the random
braiding discussed here, has also been investigated [134].
All these applications involve a set of curves (e.g. long molecules, magnetic or vortex lines)

which are knotted, linked, or braided. Knot theorists have devoted great effort to classifying such
objects. One important part of this effort concerns finding measures of complexity. This idea goes
back at least as far as Tait, who first set out tables of different knot types [143]. Tait organized
the knot tables according to a simple complexity measure, the minimum crossing number Cmin.
This number gives the minimum number of crossings of a knot as seen in any two dimensional
projection.
There are two types of topological invariants. The first, sometimes called isotopic invariants ,

involve quantities that remain constant if we deform the set of curves. Examples include the Gauss
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linking integral, helicity integrals, and knot polynomials. The second type involves quantities which
do change when the curves deform, but have a lower bound. This second type of invariant can be
regarded as a measure of topological complexity [136] of which both crossing number and energy
are examples.
This chapter investigates the crossing number and energy for random braids. Braids consist of

a set of curves stretching between two parallel planes. The endpoints of the curves are fixed but,
between the two planes, the curves are free to move so long as they do not cross through each
other. Braids are important in knot theory because (unlike knots) they can be readily classified
using group theory [22]. They are also important in solar physics, as the field lines within a
coronal magnetic loop are braided. (In fact, a coronal loop forms an arch with both ends in the
photosphere. But a simple geometrical transformation straightens out the arch into a cylinder with
ends on two parallel planes.)
Energy, of course, has the most immediate physical significance. For example, a solar mag-

netic loop usually stays close to the energy minimum (equilibrium) state consistent with the field
topology. Sometimes this equilibrium becomes unstable; a rapid reconnection event changes the
topology and energy is released in a flare. Crossing number, on the other hand, relates more
directly to the geometry of the field lines. The state of minimum crossing number may not be
exactly the minimum energy state, but one may conjecture that they will be close. We can, in
fact, find strict lower bounds for the energy of a magnetic field given its crossing number. This
has been done for fields in a spherical geometry with closed field lines [62] and in a cylindrical
geometry with braided field lines [16].
We can also consider continuous fields rather than knotted or linked curves, e.g. knotted

fluid flows and magnetic configurations [111, 112, 62, 44, 16]. Crossing number can be defined
for a continuous field by averaging the crossing number of all pairs of field lines [62, 16]. This
average crossing number will have some positive minimum amongst all fields with the same field
line topology. Minimum crossing number and minimum field energy will then both measure the
topological complexity of the field. For example, a closed, knotted tube of magnetic flux will have
a magnetic energy which generally increases with the Cmin of the knot (and with internal twist of
field lines inside the tube).
There has recently been a major effort to find the ideal shapes of knots. While the definition

of ”ideal” varies, the ideal shape is mostly obtained by minimizing some form of knot energy.
Various energy functionals have been suggested for knotted curves [62, 90, 137]. These energy
functionals have a positive minimum depending on the knot type analogous to minimum crossing
number. Some theoretical questions arise from this work. For example, are the energy minima
found using these approaches local or global minima? One would like an energy such that the
minimum is global for any initial configuration. This does not seem to be possible, however [52].
Another important question is whether an energy minimum corresponds to the minimum of a more
traditional measure of complexity, for example the crossing number. As mentioned above, it has
been implicitly assumed in the literature that this is true, however we argue here on the basis of
statistical results that this is not true. As mentioned above, energy can be defined in many ways
and different energies behave differently. We consider energy to be the length of the strings in the
braid.

4.2 Obtaining and Embedding Random Braids

For the results of our comparison of minimization strategies to be useful we discuss our approach of
generating random braids in a way such that we obtain a representative selection of braids. First,
we discuss how to obtain a random algebraic braid, then how to convert it into a geometrical braid
and finally how to reverse this conversion.

4.2.1 Randomly Generating Algebraic Braids

An algebraic n-braid is a word over the generators of the braid group Bn, that is the set {σ±1
i } for

1 ≤ i < n. Given a number of strings n and a number of crossings c, there are clearly (2(n− 1))c
algebraic braids possible. Not all of these braids are necessarily topologically distinct however.
Two words in Bn represent the same braid if and only if one can be transformed into the other
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using the following relations

σiσ
−1
i = e, (4.1)

σiσj = σjσi |i− j| > 1, (4.2)
σiσi+1σi = σi+1σiσi+1 (4.3)

where e is the identity in Bn (topologically e is the braid of no crossings; it consists of n vertical
strings). The problem of determining whether two words are equivalent or not is known as the
word problem, the most efficient algorithm for which was found by Birman, Ko and Lee [22] and
runs with complexity O(nc2).
We may select a word at random from the (2(n − 1))c possibilities by choosing each of the c

generators at random from the set {σ±1
i } for 1 ≤ i < n. The number of words in the set of the

(2(n − 1))c possibilities corresponding to a particular braid will not, on average, depend on this
braid; that is, the intersections of the equivalence classes of the represented braids and our set are,
on average, of equal size. Thus the uniformly random word corresponds to a uniformly random
braid.

4.2.2 Embedding Algebraic Braids

We describe how to determine the geometric braid which an algebraic braid represents in this
section. If we select a random braid in the above algebraic manner, we must embed it in three-
dimensional Euclidean space in order to use an energy minimizing algorithm on it.
An n-braid consists of n strings embedded in R3 and thus we may describe the braid by giving

n vector functions Cxi(z, t) parametrized by the vertical z coordinate and time t. We construct
these functions such that

Cxi(z, t) = (xi(z, t), yi(z, t), z) . (4.4)

The vertical component of the functions is assumed independent of time. This is needed only
for efficient computer implementation of the model since it ensures that the points by which the
functions would have to be approximated do not collect near the ends of the strings during the
simulation, as they would without this constraint. We shall take the braid to lie between z = 0
and z = 1 and, in keeping with the definition of braid isotopy, the points Cxi(0, t) = Cxi(0) and
Cxi(1, t) = Cxi(1) will be independent of time.
We will generate b points per crossing and string in order to represent the braid; thus there will

be bc points per string in the braid. The position vector of the jth point on string i is Cxi(j/bc, t),
which must be specified at time t = 0. If we are given a braid word in the generators σi, we set

Cxi(0, 0) = (δx(i− 1), 0, 0) (4.5)

where δx is a given parameter. The subsequent points will have a z coordinate between 0 and 1.
We then read the first generator in the braid word and add b points to all strings not involved in
the crossing which are vertically above the last set point. For the strings involved in the crossing,
the x and z coordinates are simply straight lines exchanging the two strings over a vertical region
of size 1/c. The y coordinate is constructed from the Gaussian distribution

yi(j/bc, t) = ±
δx
3
exp

(
−120 [α/2− kα/(b− 1)]2

α2

)
(4.6)

where α2 = δ2x+1/c
2 and k runs from zero to b as j increases. The positive y coordinate is chosen

for the overcrossing string and the negative y coordinate for the undercrossing string. See figure
4.2 for two examples.
It has been found in practice that this yields an esthetically pleasing embedding of the braid.

Physically, the Gaussian distribution is also intuitive because we assume the string to be elastic
later. Numerically, it may be seen that the initial and final points of the Gaussian are always close
enough to the straight segments of the braid that this does give a good distribution of points over
the braid.
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4.2.3 Extracting Geometric Braids

In this section we describe how to reverse the process described in the last section. In our model,
each point will move on a horizontal plane, the original vertical spacing between beads is preserved.
Thus we can slice the final braid into bc − 1 slices, which are the segments of the braid strings
between two points. Given a position of the observer, it is then easy to extract the left-to-right
order of the braid strings for each slice. At the start we label each string with a number increasing
from 1 for the leftmost string to n for the rightmost string. The initial order is thus the identity
permutation on n elements and each slice will have an associated permutation.
In this way we build up a list of permutations from the start to the end of the braid. If the

permutation is the same as the one before it, no further generators need to be inserted into the
braid word. If it is different, then we must insert a generator into the braid word. Suppose that
strings i and j are switched in one transition between permutations. We must establish which
string is closer to the observer on the current vertical level, which we can readily do. We must also
determine which of i and j appears first in the permutation structure from the left and in which
position it occurs. Suppose that i is found first in position k in the permutation and that i passes
over j, then we must add the generator σk to the Artin word. If i passes under j, then we must
add σ−1

k .
If there is at most one transposition of elements in the permutation at every step, the translation

is simple. If there are more than one, we must be careful to assess which string crossed with which
other string. This however may be done simply by checking which string was closest to a given
string at the current vertical level. This leaves us with the remote possibility of a triple point,
that is three strings crossing at once. This sort of crossing may be removed by a slight shift
in the observer’s position. However, a repulsive force which we will introduce later and keeps
braids from overlapping effectively negates the possibility of triple points and so the only case of
complex transitions left is several exchanges, which could be determined from the string positions
themselves.
In practice, this recognition algorithm has worked well. For a given embedding of a topological

braid, the crossing number depends upon the observer’s position, in general. To take this into
account, we rotate the observer around the braid and compute the braid word for many observation
angles and choose the shortest braid word.

4.3 A Crossing Number Minimizing Force

Here, we will obtain a force which directly minimizes the crossing number of a braid for later
comparison with the energy minimizing forces and the algebraic approach.

4.3.1 Expressions for crossing number

Recall that a braid is represented by a set of n curves (xi(z, t), yi(z, t), z) , i = 1, . . . n, 0 ≤ z ≤ 1. By
projecting the curves onto a vertical plane we can detect a number of crossings. Let the projection
angle be φ, with direction vector Cp(φ) = (cosφ, sinφ, 0). Thus for φ = 0 the projection plane
will be the x-z plane. The crossing number C(φ) will then be a function of φ. If we distort the
braid, C(φ) will change. For fixed φ we can use group theory to minimize C(φ) over all possible
deformations of the braid [17]. For n ≤ 3 an algorithm linear in the number of initial crossings
is known [17] but no efficient algorithm for n > 3 is known (see §5 for more details). Thus, it is
worth it to pursue numerical relaxation methods similar to energy relaxation but specifically based
on crossing number minimization.
The crossing number dependence on projection angle φ can be removed by choosing the mini-

mum all projection angles:

Cmin ≡
π
min
φ=0

C(φ). (4.7)

The crossing number is a sum over pairs:

C ≡
∑
ij

Cij ≡
n∑
i=1

n∑
j=i+1

Cij (4.8)
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where Cij just counts crossings between strings i and j.
In addition to decomposing C into contributions from each ij pair, we can look at how C

increases with z. Thus we will let Cij(z0) measure the crossings of strings i and j between z = 0
and z = z0. In this notation Cij = Cij(1). Let Cxi(z) = (xi(z), yi(z), z) and define relative position
vectors and angles

Crij(z) ≡ Cxj(z)− Cxi(z); (4.9)

θij(z) ≡ tan−1

(
yj(z)− yi(z)
xj(z)− xi(z)

)
. (4.10)

We will let a prime denote differentiation by z, for example

θ′ij(z) ≡
dθij(z)
dz

=
εαβr

αr′β

r2
(4.11)

where εαβ is the Levi-Civita tensor and r′β = drβ/dz.
If strings i and j wind around each other near some height z then |θ′ij(z)| > 0. Also, there will

be some projection angles φ where the strings will be seen to cross (in fact, a crossing will be seen
at height z if Cp(φ) = Crij(z)). It can be shown [16] that

dCij(z)
dz

=
1
π
|θ′ij(z)| . (4.12)

We now have

C =
1
π

∑
ij

∫ 1

0

|θ′ij(z)| dz. (4.13)

4.3.2 Derivation of the crossing number force

Suppose we employ C as a potential energy term in a Lagrangian for n strings. Varying the
Lagrangian will give an equation of motion with a force corresponding to C. Adding a strong
damping force will then give us dynamics which can be followed numerically to relax the strings
to an ‘equilibrium’ state, i.e. a state which is at least a local minimum of C. Let µ be mass per
unit length and consider a time interval T . The Lagrangian action should then be

S =
∫ T

0

(K − λC)dt (4.14)

where

K =
1
2

∫ 1

0

µ

(
dCx(z, t)
dt

)2

dz (4.15)

is the kinetic energy term and λ is a constant. The K variation (at height z) gives the usual
acceleration term µd2Cx/dt2.
However, the variation of C will not work without modification. There are two problems. First,

there is the presence of the absolute value in equation 4.13; derivatives will be ill defined at singular
points where |θ′ij(z)| = 0. In between these singular points we could replace the absolute value by
a factor ±1. However, if we do so an even nastier problem arises: ±dθij(z)/dz is a total differential.
But the variation of a total differential vanishes apart from boundary terms.
Fortunately, there is a simple way out of these difficulties: replace |θ′ij | with

Xij =
√
(θ′ij)2 + ε2. (4.16)

Later we can let ε→ 0. Let CFij be the force on string i due to string j associated with the potential
λXij . A variation in δCxi and d(δCxi)/dz leads to

CFij = −λ
(
∇iXij −

d

dz
∇′
iXij

)
; ∇′

i ≡
∂

∂Cx′i
. (4.17)
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It simplifies the calculation to note that

θ′ij = Cx′i · ∇iθij + Cx′j · ∇jθij . (4.18)

so, evaluated at the point (Cxi, z)

∇′
iθ

′ij = ∇iθij . (4.19)

Thus, suppressing the i, j labels,

d

dz
∇′X =

d

dz

(
θ′∇′θ′

X

)
=

d

dz

(
θ′∇θ
X

)
(4.20)

=
1
X

(
θ′′∇θ + θ′∇θ′ − θ′

2
θ′′∇θ
X2

)
(4.21)

=
θ′∇θ′
X

− ε2
(
θ′′∇θ
X3

)
. (4.22)

The first term here cancels the ∇X term in 4.17. 4.17 becomes

CF = −λε2
(
θ′′∇θ
X3

)
. (4.23)

We let λ = ε−2 and let ε→ 0. Summing over all strings j gives the crossing force on string i,

CFi = −
∑
j �=i

(
θij

′′∇θij
|θ′ij|3

)
. (4.24)

4.3.3 Simulation Considerations

For numerical purposes it may be wise to retain a small ε as a softening parameter, i.e. replace
|θ′ij|−3 by X−3

ij . This will prevent the force blowing up near θ
′ij = 0. Being as explicit as possible,

the force on the point Cxi(z) of the braid is

CFi(z) = −λε2
∑
j �=i

[(2r′Cr′ − rCr′′) · (ẑ × Cr)] (rẑ × Cr)(
(Cr′ · ẑ × Cr)2 + r4ε2

)3/2
(4.25)

where Cr = Crij(z), r =
√
Cr · Cr, r′ = (Cr′ · Cr)/r and ẑ is the unit vector in the z direction.

What we observe in practice is that this force causes the strings of the braids to move apart from
each other and prevents equilibrium from being reached. Thus we apply the additional constraint
that ∑

i

Cxi(z) · Cxi(z) ≤ R (4.26)

where R is a parameter of the model. After imposing this we can agree to have reached equilibrium
if and only if the maximum distance moved by a point on the braid at any time step is less than
another parameter η. We discuss the consequences of the choices for these two parameters in §6.

4.4 Energy relaxation

Two energy minimizing approaches were tested with respect to minimizing crossing number. Both
minimize elastic energy but they differ essentially in the way the elastic force is implemented: a
nearest neighbor approximation (the constrained elastic force) versus a tension force depending on
the curvature (the curvature elastic force). As these forces treat the strings as elastic, they pull the
strings closer together and would cause them to intersect and thereby change topology. In order
to prevent this, we shall introduce a repulsive force CF (r)

i (z, t) to the elastic force CF (e)
i (z, t) to make

up the total force which we use to simulate the braids,

CFi(z, t) = CF
(e)
i (z, t) + CF

(r)
i (z, t). (4.27)
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For the purposes of the repulsive force, we imagine the strings to be of circular cross-section with
diameter d. We define this repulsive force by

CF
(r)
i =

∑
k �=i

{
0 for |Cxi − Cxk| > d

Cxi − Cxk
|Cxi − Cxk| (d− |Cxi − Cxk|) otherwise. (4.28)

Since the repulsive force is non-zero in only a limited number of cases, computing it is relatively
fast as opposed to using a potential function.

4.4.1 The Constrained Elastic Force

If we imagine the points of the geometric braid to be beads of mass m connected by springs of
spring constant k and zero natural length, the elastic force on the jth bead due to the two springs
attached to it is (considering only nearest neighbor interactions)

F(e)
i

(
j

bc
, t

)
= −k

(
2Cxi

(
j

bc
, t

)
− Cxi

(
j + 1
bc

, t

)
− Cxi

(
j − 1
bc

, t

))
. (4.29)

This is the constrained elastic force. As given in equation 4.29 the constrained elastic force is a
finite difference scheme for the differential equation

F(e)
i (z, t) =

k

b2c2
d2Cxi (z, t)

dz2
. (4.30)

Once the total force is known, we apply it to the beads

Cxi (z, t+ δt) = Cxi (z, t)−
Fi(z, t)
2m

(δt)
2 . (4.31)

We have neglected the fact that beads should acquire a velocity after the force is first applied.
Ignoring this velocity serves to heavily damp the system, which is desirable for the simulation. A
proof that this is acceptable on a fundamental level is given in [11] and references therein. The
force is applied for a duration of δt after which the beads will have moved a certain distance.
The maximum distance moved by any bead in the whole braid during any step r(t) decreases
monotonically to zero since the system is heavily damped due to the neglection of the velocity
and that fact that the springs have natural length zero. If no bead moves more than a minimum
distance of η, we may terminate the simulation because in all subsequent steps of the simulation
no bead will move further than η. Thus the end of the simulation is reached when r(t) ≤ η.
A given braid will determine n and c but we have endowed the model with a number of

parameters: The string diameter d, the number of beads per crossing b, the mass of a bead m, the
spring constant k, the separation of the strings δx, the duration of the force δt and the equilibrium
distance η. Based on computer experiments we make choices for some of these

d =
δx
6
, δ2t = 2m, η =

δx
105

, (4.32)

0.1 ≤ k < 0.5, 10 ≤ b ≤ 50, δx =
1

n− 1 . (4.33)

These values have been found to give good results. With increasing k, fewer steps are required to
reach equilibrium but k < 0.5 must be observed because otherwise the repulsive force will not be
very successful. Accuracy increases with b but so does the computation time. Setting b < 10 will
fail because the distances between beads are large enough for the repulsive force not to guarantee
isotopy, however b > 50 is unnecessarily expensive in terms of time.

4.4.2 The Curvature Elastic Energy

The other way of dealing with elastic relaxation is to treat each string in the braid as a bungee
cord, subject to a tension force which aims to reduce any curvature and bring back the string to a
straight configuration (given the constraint on the end points). Indeed, as already remarked above,
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a repulsive force among the strings is needed to counteract the tension in order to maintain the
topology unchanged.
An expression for the elastic force can be readily obtained by using a variational approach

similarly to what has been done in §3. In fact, since this force tends to minimize the length of
the bungee cord, we can employ the total length of the strings as a potential energy term in the
Lagrangian action S describing the braid (4.14)

S =
∫ T

0

(K − λL)dt (4.34)

where

K =
1
2

∫ 1

0

µ

(
dCx(z, t)
dt

)2

dz (4.35)

is the kinetic energy term, λ is a constant,

L =
∫

ds , (4.36)

and ds is the infinitesimal arclength along each string (ds2 = dx2+dy2+dz2). The variation of the
action (4.34) provides an equation of motion which is the well-known equation for the vibrating
cord. Any perturbation from the equilibrium position is opposed by a restoring force proportional
to

F ∝ d2Cx

ds2
(4.37)

and always directed along the radius of curvature. However, we are not allowed to perform any dis-
placement along the z direction because the braid is represented by a set of curves (xi(z, t), yi(z, t), z) , i =
1, . . . n, 0 ≤ z ≤ 1. Thus, instead of (4.37), we use the horizontal force

F(e)
i =

d2xi
ds2

− d2z

ds2
dxi
dz

. (4.38)

This is the curvature elastic force. This force moves the curve as the full curvature force would; the
second term gives an extra horizontal displacement to the string which compensates for the effect
of the missing vertical force. Once its value is known in each point of the braid and cumulated with
the repulsive term, advancing in time is achieved according to the same scheme as above (4.31).
The actual evaluation of the curvature elastic force involves the computation of second and

first order spatial derivatives. In this case, then, we found it convenient to use a grid of N evenly
spaced points along the z axis and ordinary centered difference. Stopping criteria for the numerical
simulation of energy relaxation were defined as explained in the previous section. We kept N = 200
in all the cases presented in the following, while the choice of the other parameters was

d = δx, δ2t = 2m, (4.39)

η =
δx
105

, δx = 1
20 . (4.40)

4.5 Algebraic Minimization

Recall that the braid group Bn is defined by

Bn = 〈 {σi} : 1 ≤ i < n; (4.41)
σiσj = σjσi |i− j| > 1;σiσi+1σi = σi+1σiσi+1〉 . (4.42)

An n-braid A of c crossings is a word in Bn of word-length c, so the general form of A is

A = σε1a1
σε2a2

· · ·σεc
ac

εk = ±1, 1 ≤ ak < n, ∀k : 1 ≤ k ≤ c. (4.43)
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Consider an n-braid A of the form given in equation 4.43. Suppose we wish to find the n-braid
Am equivalent to A such that the length L(Am) of Am is minimal over the equivalence class of
A. It has been shown [125] that this question is NP-complete and hence computationally difficult
(if P �= NP, it is intractable). The following presents a heuristic algorithm for getting close to
Am. We begin with the leftmost generator of A and attempt to move it to the right using both
braid group operations. If we can cancel it along the way, we do and if we can not, we move it
back to where it started. In this way, we proceed to move all the generators as far to the right as
possible. Then we begin at the end and move each generator as far to the left as possible in the
same manner. This algorithm will always produce an equivalent braid A′ such that L(A′) ≤ L(A).
We consider L(A) generators and move them O(L(A)) moves to the right and left. Thus this
algorithm takes O

(
L(A)2

)
time and constant memory. In fact we move a particular generator at

most L(A) generators and this is only for the case when all the other generators commute with it,
thus the average case complexity is likely to be close to linear in L(A).
This algorithm will not produce a minimum length representative in all cases because it can

not unravel complex crossings. To get to the minimum length would require more subtle trans-
formations than just movements to the right or left, which topologically correspond to pulling the
strings apart from underneath the crossing. However, as computer experiments show, it does do
quite well.
Let us calculate an upper bound to the reduction ratio obtained by this method as a function

of n and c. To calculate these, consider the likelihood that a particular generator will be followed
by its inverse, which is just Q0 = 1/2(n− 1). The probability Qj that a generator and its inverse
are separated by j generators through which either can be moved is the corresponding probability
for j = 1 to the power j. We require the number of braids of length 1 which may be generated so
as not to contain the generator interfering with the movement of generator σi. If i = 1 or n − 1,
this is 2(n− 3) and 2(n− 4) otherwise. Thus

Qj =

2(n− 4)
(

2(n−1)−2
2(n−1)

)
+ 2(n− 3)

(
2

2(n−1)

)
2(n− 1)

j Q0 (4.44)

=
[
n2 − 5n+ 5
(n− 1)2

]j
Q0 (4.45)

The final factor of Q0 is present because the generator after the sequence of j generators is required
to be inverse of the original generator, an event with probability Q0. To get the total probability
Q of being able to cancel a generator σi with its inverse by simple exchange movements over the
length j = 0, 1, · · · , we must sum these probabilities in order weighted by the probability that their
predecessors did not happen. Thus

Q = Q0 + (1−Q0)Q1 + · · ·+
j−1∏
k=0

(1−Qk)Qj + . . . (4.46)

Note that since the exchange move is not allowed for n = 3, Q = Q0 for n = 3. The reduction
ratio R which occurs as a consequence of this probability is R = 1 − 2Q since each time that the
event happens two generators may be canceled. Note that in this calculation we have considered
the probability that a generator can be moved next to its inverse in the word using only the far
commutation relation that σiσj = σjσi for |i − j| > 1 in a long braid. The heuristic algorithm
however uses both braid group moves to attempt to move generators next to their inverses. Thus R
is an upper bound for the reduction ratio achieved by the heuristic algorithm as the braid becomes
long.
In §6 we present the results of the algebraic reduction of a large number of braids but a few

comments about the efficiency of the algorithm are in order. The only exact algorithm to minimize
braid is valid only for n ≤ 3 [17] and by comparing this heuristic to this exact algorithm, we find
that the heuristic finds a braid the length of which is within five percent of the length found by
the exact algorithm and that it reaches the actual minimum in 0.005 of all cases. This shows that
the heuristic is quite effective for n = 3 (note that reduction for n = 1, 2 is trivial since B1, B2 are
free groups).
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Table 4.1: Reduction ratios α = Cmin/C(0) as a function of the number of strings n.

Heuristic Constrained Curvature Crossing
n Heuristic Bound Elastic Elastic Force
3 0.328 0.500 0.412± 0.028 0.516± 0.007 0.426± 0.006
4 0.525 0.632 0.483± 0.021 0.611± 0.006 0.430± 0.005
5 0.579 0.652 0.529± 0.016 0.658± 0.005 0.447± 0.004
6 0.609 0.662 0.555± 0.012 0.676± 0.005 0.455± 0.004
7 0.627 0.668 0.574± 0.010 0.692± 0.005 0.469± 0.004
8 0.640 0.673 0.590± 0.008 0.694± 0.005 0.471± 0.004
9 0.650 0.677 0.600± 0.007 0.697± 0.005 0.476± 0.004
10 0.658 0.681 0.617± 0.006 0.693± 0.004 0.481± 0.004

4.6 Some numerical results

Extensive numerical calculations were made in order to compare the above methods of finding
the minimum crossing number of a braid. A large selection of random braids were generated as
discussed in §2 and then simulated using all four different methods described above. In §6.1, the
comparison is made in terms of the ratio α of final crossing number to initial crossing number
as a function of number of strings and number of initial crossings. When braids were reduced
using forces, we chose the final braid by using the translation algorithm described in §2.3 for many
angles around the vertical axis of the braid and isolated the braid with minimum crossing number.
The reason for this is that the position of the observer affects the crossing number seen from
that perspective. In §6.2, we compare the efficiency of our methods, giving an estimate of the
algorithmic complexity in terms of the number of strings n and the other free parameters. Finally
in §6.3, we focus on the effect of the three forces on the energy (defined by total length) of the
braids, by comparing the final equilibrium state with the initial configuration.

4.6.1 Efficacy Analysis

Table 4.1 lists the results of our experiments in computing α = Cmin/C(0). It has been found that
α decreases with increasing the initial number of crossings C(0) but quickly approaches a limiting
value. In §5, we have calculated an upper bound for α using the algebraic method of reduction
as the initial crossing number C(0) gets large. Further investigation shows that if C(0) = 10n the
resultant α is virtually at the limiting value, so that it is this initial length that was chosen for this
simulation since computation time is a very real issue here. Given a value for n and a minimizing
method, we generated a statistical ensemble of 1000 braids, with the same number of crossings
C(0) and number of strings n but otherwise randomly embedded, and we evolved them in time
as long as the equilibrium constraint, described in the previous sections, was satisfied. We then
computed a distribution of reduction ratios α, which turned out to be a Gaussian distribution. In
Table 4.1 are reported the mean values obtained from this analysis, with an error of one standard
deviation.
Except for the 3-braid, the average values in Table 4.1 suggest that the crossing number force

is by far the best, among the methods analyzed, in reducing the crossing number. This result was
somewhat expected because of the way this force was derived. However, it is still worth noticing
that it produces reduction ratios at least 15% smaller than the other methods and even 30% smaller
than the curvature elastic force. It is interesting that the heuristic algebraic method lies roughly
between the two elastic approaches with the constrained elastic being the clear winner.
In Fig. 4.1, for a better comparison, we show the average reduction ratios α as a function of

the number of string n. On the left, the results obtained by the heuristic algebraic algorithm are
plotted with their correspondent bounds (column 2 and 3 in Table 4.1). On the right, ratios from
constrained and curvature elastic relaxation are displayed with ratios from crossing number force
relaxation (column 4, 5 and 6 in Table 4.1), all with error bars. All the curves exhibit a steep
growth followed by a slowly increasing phase, thus suggesting an overall logarithmic behavior.
In one case, namely the curvature elastic relaxation (diamond in the right panel of Fig. 4.1), we
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Figure 4.1: Reduction ratios α = Cmin/C(0) as a function of the number of strings n. On the left,
we display ratios obtained by using the algebraic algorithm (•) and their correspondent bounds (.);
on the right, ratios are from numerical experiments with curvature elastic force (/), constrained
elastic force (+) and crossing number force (×). For the data, refer to Table 4.1.

observe a saturation of the reduction ratio to a limiting value αc ∼ 0.69, even if we cannot conclude
this is an asymptotic value due to the relatively small maximum number of strings (n = 10) we
have achieved in this simulation.

4.6.2 Efficiency Analysis

Having compared by how much we may shorten an average braid A, we ask how long this will take
for the various methods. We will answer this by giving the complexities of all the methods and
comparing them by this and their actual relative running times. The algebraic method, as stated
before, has complexity O

(
L(A)2

)
independent of n. For each of the forces, we must compute and

apply the force for each point on the braid. For the repulsive force we need only compute it for
the points on the same level for all other strings. If we use b points per crossing and string for
the simulation (nbL(A) points in total), the complexity per time step is clearly O

(
n2bL(A)

)
. The

number of time steps required depends upon our equilibrium condition. As described above we
compute the maximum distance moved by any point on the braid and we terminate the simulation
if this is less than the equilibrium parameter η (for practical purposes a maximum number of time
steps must, in general, also be imposed for certain awkward cases). It would seem intuitive that if
η is chosen optimally, the number of steps required would be of order n. Thus giving the optimal
model a complexity of O

(
n3bL(A)

)
.

In spite of this, there seems to be no general method to estimate an optimal η and so we are not
able to obtain the optimal complexity in practice. The constrained elastic force and the repulsive
force vary linearly in the coordinates of the points and the difference at any time step between the
coordinates is exactly the force (see our choices of parameters in equations 4.32 and 4.33). Thus
the number of time steps increases linearly with 1/η giving it a complexity of O

(
n2bL(A)η−1

)
.

In the case of the curvature elastic relaxation, the force acting on any point of a certain string
depends on all the points belonging to the same string. For what concerns the stopping parameter
η, dimensional analysis suggests a dependence as before, namely on η−1. Thus, the complexity for
the global elastic force is O

(
nb2L(A)2η−1

)
. Since this force is always implemented together with

the repulsive force, whose complexity scales with n2, the total complexity is identical to that of
the constrained elastic energy.
The crossing force is calculated as a sum over all other strings, that is that the complexity of
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each time step is O
(
n2b2L(A)2

)
. The crossing force has two additional parameters to η, namely ε,

the infinitesimal parameter introduced in 4.16 to avoid singularities, and R, the maximum square
distance that the sum of the points on any horizontal plane are allowed to have. From the form
of the force in equation 4.25 we see that it is of order λr−1ε−1. The results presented in this
paper have been found by using λ ∼ ε0 and ε = 0.05. Clearly ε too close to zero is not acceptable
because of the force blowup at ε = 0. Too large ε is also unacceptable since the force becomes too
strong and the points move too far at each time step to preserve continuity of the braid string;
this transition seems to occur when ε becomes greater than 0.5. As far as we have investigated the
choice of free parameters, these values for λ and ε can be assumed as optimal values. Therefore,
acceptable final states are reachable in ∼ η−1ε−1 time steps giving the algorithm a total time
complexity of O

(
n2b2L(A)2ε−1η−1

)
. The complexity seems to be independent of R.

We note in passing that both for the curvature elastic force and the crossing number force we
actually used a grid of N = 200 evenly spaced points along each string: in this case, the factor
bL(A) simply must be read as N in the complexity estimate.
It’s worth stressing that the actual amount of computation time required for the minimum

crossing force is the largest. The algebraic algorithm is much faster than the elastic energy simula-
tions in practice even though the parameter b can essentially be regarded as constant. The reason
for this seems to be that the average case complexity for the heuristic is very close to linear.

4.6.3 Energy Analysis

As a final step in our comparison, we present results concerning the energy of the final braid. We
limit ourselves to the three relaxing methods, since any energy estimate depends on the actual
configuration of the braid in the embedding space. In fact, we took the total length of the braid
to be its energy. This choice, besides being the simplest and most natural, has the advantage
to give us a qualitative idea of the physical configuration of the final braid. Consider the braid
σ1σ2σ

−1
1 σ2σ

−1
1 σ1σ

−1
2 . In Fig. 4.2, we display the initial embedding and the final configuration of

this braid after it has been relaxed by our forces. We note great similarity between the elastic
energy approaches and a marked difference between the elastic and crossing number forces. The
crossing number force, while driving the strings outward (to greater total braid energy) achieves
a more balanced braid. There is a curious feature in the final configuration of a braid relaxed
under the crossing number force which can be seen in the figure. The parts of the braid which
are close (vertically) to a crossing are closer to the vertical center of the braid than the rest of the
string. The elastic forces, by construction, draw the braid in on itself and thus create a braid of
lower energy which sometimes results in trapping crossings; this is the main reason why the elastic
approach will not, in general, actually reach the minimal length of the braid. Fig. 4.2 displays the
same four pictures for the braid σ1σ

−1
2 σ−1

1 σ−1
2 σ1 also in order to make more apparent the features

of the forces.
Table 4.2 gives the mean values of the final energy for the constrained and curvature elastic

force as well as the minimum crossing force, obtained from the same set of data above. For the
sake of comparison, the mean initial energy of each ensemble of randomly generated braids is given
in the second column. Since the total length depends upon the number of strings, we have divided
the final energy by the number of strings. Note that we have defined a geometrical braid to lie
between the planes z = 0 and z = 1 so that this is already normalized. Thus the minimum possibly
energy of any n-braid is 1.
As expected, the energy is systematically increased by the crossing number force (see in Fig.

4.3 crosses versus bullets). Besides, the fact that we confine the physical braid in a cylinder in order
to prevent the occurrence of singularities, imposes a limit on the final energy, which more or less
oscillates about a fixed value. On the contrary, the constrained and curvature elastic forces reduce
the energetic content of the braid. While the curvature force reduces the energy more effectively
than the local, the descent of energy as a function of n is steeper for the local energy (see Fig.
4.3) and so we may expect an intersection of these methods at about n = 13. Note that the mean
initial energy shows a slight dependence on n, due to the embedding procedure we use.
Once a minimal configuration has been reached, one may wish to know whether it is a local

or a global minimum. This is a very difficult question to answer and we have not endeavored to
do so. However, because of the constraint that the endpoints of the braid may not move, we may
safely say that the number of distinct local minima is finite and low.
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Figure 4.2: This figure gives the initial embedding and the final configuration after the con-
strained elastic, curvature elastic and crossing number forces have been applied for the two braids
σ1σ2σ

−1
1 σ2σ

−1
1 σ1σ

−1
2 and σ1σ

−1
2 σ−1

1 σ−1
2 σ1 respectively. We see great similarity between the elastic

approaches but substantial differences between them and the crossing number force. Note that the
diagrams for the crossing number force have been rotated by π/4 to make more apparent the curi-
ous deformations of the strings. (The images were generated using BraidLink, a software program
written by the author.)

Table 4.2: Total length per string.

Initial Constrained Curvature Crossing
n Energy Elastic Elastic Force
3 1.796± 0.001 1.793± 0.003 1.323± 0.010 2.42± 0.03
4 1.858± 0.001 1.690± 0.002 1.333± 0.006 2.28± 0.02
5 1.911± 0.001 1.660± 0.001 1.314± 0.004 2.31± 0.02
6 1.960± 0.001 1.608± 0.001 1.298± 0.004 2.38± 0.02
7 2.000± 0.001 1.550± 0.001 1.292± 0.003 2.41± 0.02
8 2.032± 0.001 1.501± 0.001 1.288± 0.003 2.35± 0.02
9 2.054± 0.001 1.448± 0.001 1.282± 0.003 2.36± 0.02
10 2.076± 0.001 1.411± 0.001 1.279± 0.003 2.41± 0.02
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Figure 4.3: The total length per string is displayed here as a function of the number of strings for
the curvature (/) and constrained (+) elastic energies and the crossing number force (×) as well
as the initial energy before relaxation (•).

4.7 Conclusions

We have investigated, by means of computer simulation, different methods to reduce the crossing
number of a braid over its equivalence class. As a group theoretical question, this problem is
difficult (if the minimum is to be found [125]) but can be profitably approached using a heuristic
algorithm presented above. A braid can also be regarded as a topological object divested of this
algebraic approach. Here the strings may move (except the endpoints) in the embedding manifold
without crossing each other. For algorithmic purposes a systematic way to move the strings must be
found based on certain principles. Two of our approaches center on a physical model of the strings
as elastic strings made of flexible material. Elasticity may be modeled using a nearest neighbor
or curvature approach, both of which were investigated. Another way to systematically move the
strings is to construct a force not based on a physical idea but by using the crossing number (as an
integral) as a potential in a Lagrangian. This last approach has proved to be the most successful
in terms of finding the shortest braid, on average. It is however the most time consuming method.
The algebraic approach, while only third (out of the four methods) in reduction efficacy, is the
fastest by far.
In many applications, the braid is already an embedded topological object and not an element

of the braid group. Here the two energy methods find their application as they are the only
physically relevant methods. In solar physics, for example, the magnetic field lines may be modeled
as braids. These seem to behave as elastic configurations over time. It must be mentioned that
the endpoints of these braids do move but in a random fashion. Research about this added
complication is in progress. In physical applications, we are most concerned about the energy
of a braided configuration and the elastic model seems to be the most realistic for a variety of
applications. While the constrained approach is more successful in terms of crossing number, the
curvature fares better in an energetic sense.
What has clearly emerged from the discussion above is that minimum energy and minimum

crossing number for braids are different things. While reducing energy does also reduce crossing
number, reducing crossing number does not necessarily reduce energy and crossing number may
be reduced much further after the minimum energy configuration has been reached. Thus, it is
clear that the elastic approaches terminate in a local minimum as far as the equivalence class of
the initial braid is concerned. From the point of view of ideal knot theory, this result is significant
because it has often been suggested that by reducing some form of knot energy, one may find a
knot which is particularly simple over its equivalence class. Whether this measure of simplicity
coincides with minimum crossing number over all possible projections (the traditional measure of
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simplicity used by knot tabulators such as Tait) has given rise to some debate for which our result
provides additional fuel.
We conclude our investigation by saying that the algebraic method provides a useful minimiza-

tion approach for purely group theoretical work, the crossing force is the best approach when one
wishes to find an especially short braid (and is not bound to a purely group theoretical framework)
and the curvature elastic energy is the best scheme to minimize elastic braid energy, i.e. total
string length.
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Chapter 5

Knotation and Braiding a Knot

We consider the notion of a tangle and analyze the operations which are possible on it. We
use tangles in constructing a new notation for knots based on Conway’s knot notation. This new
notation has several advantages over existing notations. All the basic properties of the notation and
algorithms to retrieve simple knot information are discussed. Procedures for putting a knot into
our notation are also given. Finally, polynomial-time algorithms, which do not rely on topological
deformation, are described which produce a plait and a closed braid which are isotopic to any knot
given in our notation.
First, we review the notion of tangles and investigate their classification. We shall then intro-

duce the new notation, prove that all knots may be represented by it, give an algorithm to place a
given knot into this notation and present a traversal algorithm which will calculate certain features
of the knot. An algorithm is then given to obtain a plait and a braid, the closures of which are a
given knot in the new notation.

5.1 Tangles

5.1.1 Definition and Partition

Consider the 3-ball B3 and choose 2n points on its surface, which is the 2-sphere S2, and call
the set of these points P . Attach n polygonal curves to the 2n points such that: (i) each curve
intersects S2 in exactly 2 points in P , which are its endpoints, (ii) exactly one curve may begin
or end at any one point in P and (iii) no curve may intersect another. If the set of these curves
is T , then we will call the set

(
B3, T

)
an n-tangle. In particular, we will focus on 2-tangles and

so whenever we skip the n, it will be understood that we mean n = 2. Note that our requirement
that the curves be polygonal excludes any wild tangles, where wild is to be understood in the usual
knot theory sense. Two tangles are called equal if they are isotopic without moving the points in
P .

•NW •NE

•
SW

•
SE

y

x

z

O

Figure 5.1: The 3-ball and the four points on its surface which form the endpoints of the two
polygonal curves necessary to define a tangle.

A tangle can be visualized readily by choosing the four points (named according to the cardinal
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points of the compass)

NE =
(
0,
1√
2
,
1√
2

)
, NW =

(
0,− 1√

2
,
1√
2

)
(5.1)

SE =
(
0,
1√
2
,− 1√

2

)
, SW =

(
0,− 1√

2
,− 1√

2

)
(5.2)

on the unit sphere, which will be our canonical B3, see figure 5.1. Even though tangles are, by
definition, three dimensional objects, we will work with their projection onto the two dimensional
plane as if the projection is the tangle. The fact that a projection in which there are at worst
double points always exists for a tangle follows from the corresponding theorem about knots.

•

•

•

•

0

•

•

•

•
∞

•

•

•

•

1

•

•

•

•

−1

Figure 5.2: The elementary tangles.

We shall find it convenient to partition the set of all possible tangles into a few categories:
elementary, integral, fractional, rational and irrational. The simplest are the elementary tangles,
of which there are four. These are best introduced by displaying them in figure 5.2. Note that we
have not drawn B3, it should however be understood to be present. The reason for naming them
as they have been will become apparent later on. Note that the literature disagrees on which of
the two tangles ±1 is to have the minus sign, this is a matter of convention and has no serious
consequences (we follow the convention introduced by Conway).

A+B ≡

A B

, A⊕B ≡

A

B

Figure 5.3: Tangle addition.

The other types of tangles can be most readily defined in terms of combining the elementary
ones in some way. To do this, we shall define two ways of adding tangles. Following Conway, we
denote a general tangle by an ”L” shaped symbol within the 3-ball and we also sketch the ends
of the two curves by which tangles may be attached to one another. In this way, we define the
horizontal sum + and the vertical sum ⊕ in figure 5.3.
In what follows, we shall use a superscript to denote of which type a particular tangle t is; for

example an elementary tangle t would be denoted by t(e). An integral tangle t(i) and a fractional
tangle t(f) will be defined in terms of the elementary tangles ±1 by

t(i) = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
t factors

(5.3)

t(f) = 1⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
t factors

(5.4)

The negative versions are, of course, the sums of −1 tangles instead of 1 tangles. A rational tangle
t(r) can then be defined in terms of a sum of integral and fractional tangles. The definition of
the sum differs if the number of tangles j in the sum is even or odd, this is because the definition
requires an alternate sum between integral and fractional (and the two methods of addition) which
always ends in an integral tangle being added. This is because the set of rational tangles may
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be classified if this restriction is imposed; the classification scheme is outlined in the next section.
The integral tangles, including the last, may be zero and the fractional tangles may be infinite.
If any component tangles are 0 or ∞ though, they may be removed from the sum and the terms
immediately preceding and following the removed term may be added together to shorten the sum,
while preserving isotopy.

t(r) = a(i) ⊕ b(f) + c(i) ⊕ d(f) + · · ·+ z(i)︸ ︷︷ ︸
j odd

(5.5)

t(r) = a(f) + b(i) ⊕ c(f) + d(i) ⊕ · · ·+ z(i)︸ ︷︷ ︸
j even

(5.6)

Note that the set of elementary tangles is a subset of both the integral and fractional tangle
sets which are subsets of the rational tangle set. We shall call any tangle which is not rational,
irrational.

5.1.2 Classification of Tangles

We may denote a rational tangle by giving its integral and fractional factors in order. Thus a
sequence of integers t(r) = (a1, a2, . . . , ai) defines any rational tangle. Note again that the identity
of the tangle factors is decided by requiring the last in the sequence to be integral. Given a rational
tangle t(r) = (a1, a2, · · · , ai), we may associate with it an extended rational number E(t(r)) = α/β,
where α and β are integers including zero. We say an extended rational number because this allows
for 1/0 = ∞, the inclusion of which extends the rational numbers. We calculate E

(
t(r)

)
by the

continued fraction (the + signs are arithmetic additions and not tangle additions)

E
(
t(r)

)
= ai +

1

ai−1 +
1

ai−2 · · ·+
1
a1

(5.7)

Conway [50] was able to deduce that two rational tangles are equal if and only if the associated
extended rational numbers were equal, this is called Conway’s Basic Theorem. The first published
proof may be found in [39] but a more intuitive proof was given by Goldman and Kauffman [71].
Thus Conway’s Basic Theorem classifies rational tangles in a simple algorithmic manner.
In particular, the fractions associated with the elementary tangles are their numerical names:

0, ±1 and∞. The fraction for an integral tangle t(i) is t(i) and for a fractional tangle t(f) is 1/t(f).
It is clear now why these tangles were named as they were. This concludes our review of previous
work on tangles and the rest of the chapter is new work.
By equation 5.7 is easy to calculate the fraction associated with a given rational tangle. Given

a fraction, it is also possible to decompose it into appropriate factors, thereby constructing the
rational tangle associated with it. Euclid’s algorithm will accomplish this.

5.2 Knot Notation

Tangles were invented in an effort classify knots (they may be used to classify two-bridge knots via
the correspondence with the extended rational numbers [116]) and so we must have a method to
combine tangles into knots. Conway [50] showed that any knot may be obtained by substituting
several rational tangles into the vertices of basic polyhedra. A polyhedron, in the sense of Conway,
is an edge-connected 4-valent planar map and it is basic if, in addition, no region (including the
infinite region) has just two vertices. Conway constructs the 8 different basic polyhedra necessary
to denote all prime knots up to and including 11 crossings. The beauty of using the basic polyhedra
is that small knots may be named quite efficiently, that is one gives the basic polyhedron and the
tangle fractions to be substituted. However it can be quite a chore to construct the Conway name
of a large knot. The next section will introduce our new knot notation.
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Figure 5.4: The universal polyhedron

5.2.1 The Universal Polyhedron

Consider the basic polyhedron P (i, j) shown in figure 5.4; we will call it the universal polyhedron.
It is a prototype for a knot projection. The circles will be called vertices and the lines connecting
them edges. The vertices are arranged into i rows of j vertices each. Each vertex can thus be
labeled by its row and column index. While P (i, j) denotes the whole polyhedron and specifies
the number of rows and columns, pkl specifies a particular vertex in row k and column l. In
what follows, we will substitute rational tangles into the vertices to yield a knot projection. Since
a rational tangle may be specified by a single extended rational number, pkl takes an extended
rational number value. By substituting rational tangles into all vertices of a given polyhedron, we
obtain a knot projection of some tame knot. This can be completely specified by giving all pkl a
value, which may be arranged into a matrix form,

P (i, j) =


p11 p12 · · · p1j

p21 p22 · · · p2j

...
...

. . .
...

pi1 pi2 · · · pij

 (5.8)

Giving a matrix with extended rational number valued entries completely specifies a knot
projection (the parameters i and j of the polyhedron are just the number of rows and columns,
respectively, of this matrix). Since this is true for rational tangles, it is true for any subset of the
rational tangles, in particular the elementary tangles. Thus if all pkl take a value from the set
E = {0,−1,+1,∞}, the result is also a knot projection.
We wish to find this matrix notation for a given knot projection. Since this is an algorithmic

question, we must ask in what fashion the knot is already given. Generally a knot is given by one
of its projections onto the plane. A knot projection is characterized by n double points and 2n
arcs connecting them. The information we must encode into our notation is which type of double
point each of the n points are and which other points they are connected to.

Algorithm 5.2.1 Input: A knot projection with n crossings. Output: A knot projection given in
our matrix notation.

1. Circle each double point in the knot projection and name them by letters in the alphabet
A,B, · · · . The naming may start at any point on the knot but the order should be in the order
the crossings are encountered when traversing the knot in the direction of its orientation.
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2. For each double point, number the intersections of the knot with the circle drawn in step
1 from one to four in clockwise order starting at an arbitrary point. There are 4n such
numberings.

3. The connections may now be written down from the knot projection, for example ”A1→ B2.”
For n crossings, there will be 2n such connection rules.

4. Insert double point A into vertex (1, 1) such that point A1 is at the top left of the vertex.

5. Insert the other double points into the polyhedron in order making all the necessary con-
nections, as enumerated in step 3, between the current point and all the previously inserted
points. The connections are to be made by using the intrinsic connections of the polyhe-
dron and the 0 and ∞ tangles. Increase the number of rows and columns in the polyhedron
dynamically as this becomes necessary.

6. When the final point is added and all connections have been made, the algorithm is complete.

A

B

C

1

2

3

4

1

2

3

4

1

23

4

Figure 5.5: Naming and labeling the points in a projection of the trefoil knot.

To illustrate this algorithm, we shall find the knotation for the trefoil knot. We have drawn
the standard projection of the trefoil knot in figure 5.5 and have circled the double points, named
them and numbered the four intersections between the ±1 tangles which are the double points and
the circles. This completes steps one and two of the algorithm. In step three, we must write down
how the points are to be connected,

A1 → B2 A4 → C4 (5.9)
A2 → B1 B3 → C3 (5.10)
A3 → C1 B4 → C2 (5.11)

Inserting double point A into vertex (1, 1) in step four requires us to insert a −1 tangle into the
(1, 1) position in the matrix. We must now add double point B. Note that we have numbered B in
such a way that A2→ B1 which is an intrinsic connection in the polyhedron if we put B in vertex
(1, 2). Since we also have A1→ B2, we would like the final polyhedron to have only two columns
since then this connection too is intrinsic to the polyhedron. Since these are the only connections
between A and B, we now have to add C. Note that we have numbered C in such a way that
A3→ C1 which lets us place C underneath A. Since we also have B4→ C2, we accommodate both
rules by the intrinsic polyhedron connections by putting C into vertex (2, 1). The last two rules
A4→ C4 and B3→ C3 can be incorporated by placing an∞ tangle in vertex (2, 2) and requiring
the polyhedron to have two rows. This completes the insertion of all double points, completes all
the connections and fixes the rows and columns of the polyhedron. All vertices are filled and thus
the algorithm is complete. The polyhedron with the inserted tangles is shown in figure 5.6 and the
result is

trefoil =
(
−1 −1
−1 ∞

)
(5.12)
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A B

C

Figure 5.6: The trefoil knot in P (2, 2)

An advantage of the above algorithm is that the number of rows and columns is only increased
when necessary. The disadvantage is that it is not possible to say, a priori how many rows and
columns a knot of n crossings will need. The most crucial step in the algorithm is step two. If the
intersection points are numbered with foresight, then most connections can be made by making use
of the intrinsic connections in the polyhedron and will not require the addition of 0 or ∞ tangles.
Arguing like this, one might be lead to believe that it should in general be possible to knotate an
n crossing knot in a polyhedron P (i, j) where i = j = '

√
n(, i.e. the least integer greater than

√
n,

we can not prove this however. Having presented an algorithm and an example, we give a proof
that any knot can be represented in some P (i, j) using only elementary tangles.

Theorem 5.2.2 Every regular projection of any knot may be represented by the universal polyhe-
dron P (i, j) for some i and j all the vertices of which contain elementary tangles.

Proof. A regular projection of a knot is characterized by a finite number n of double points and
2n arcs which connect the double points in a specific manner. For sufficiently large i and j, the
polyhedron P (i, j) can accommodate all double points in the form of ±1 tangles and can achieve
the desired connection of these by placement of 0 and ∞ tangles into it. This is obvious because
the 0 and ∞ tangles represent horizontal and vertical connectors in the polyhedron. Because this
connection may be achieved without ±1 tangles, it is clear that no further components, with the
possible exception of unknots, are created. Thus what remains to be shown is that no unwanted
unknots will be created.
There are ij vertices and 2ij edges connecting them in the empty polyhedron P (i, j). Elimi-

nating one vertex by a 0 or ∞ tangle, eliminates two edges. Apart from the ±1 tangles of which
there are n, the final polyhedron will contain ij − n tangles of type 0 and ∞ which will have
eliminated 2(ij−n) edges from the original polyhedron, leaving exactly 2n edges which are needed
to connect the double points. Thus there is no extra edge left over which could possibly form an
extra component. Therefore any knot may be represented using the basic polyhedron P (i, j) and
elementary tangles. ✷

In the section 5.4, we give a set of equations relating our notation to Conway’s so that a knot
given in either notation can be immediately translated to the other. We also present an algorithm
with which a knot given in our notation using non-elementary integral tangles may be transformed
into a knot using only elementary tangles.
We have been discussing unoriented knots but the orientation must also be encoded in the

notation if required. Each elementary tangle is composed of two strings which may have two
orientations each. Therefore each elementary tangle has four different possible orientations. It
follows from theorem 5.2.2 that any oriented knot may be represented by the polyhedron P (i, j)
in which the oriented elementary tangles are inserted into the vertices. While every matrix with
elementary tangles in all its entries denotes a valid knot, not all matrices with oriented elementary
tangles denotes a valid oriented knot because we have to require the orientations of the tangles to
be compatible. Whether a given matrix does represent a valid knot may be decided by the knot
traversal algorithm presented in the next section.
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5.2.2 Basic properties

We will now assume that the knot of interest is given in our matrix notation with pkl ∈ E . A
few basic properties of the notation need to be enumerated before the notation becomes useful in
dealing with knots. These properties include the behavior under knot addition, calculating the
number of components in a knot and calculating the number of regions in the projection.
Two knots may be combined into a single knot by addition. In adding, each knot is cut at a

single point and the ends are spliced together. We find that given two knots A in P (i, j) and B in
P (i′, j′) such that j′ ≥ j, the sum C = A#B is given by

C =



∞ 0 ∞ · · · · · · · · · · · · · · · · · · · · ·
a11 a12 a13 · · · a1i b11 b12 b13 · · · b1i′

a21 a22 a23 · · · a2i b21 b22 b23 · · · b2i′
...

...
...

. . .
...

...
...

...
. . .

...
aj1 aj2 aj3 · · · aji bj1 bj2 bj3 · · · bji′

0 0 0 · · · 0 bj+1 1 bj+1 2 bj+1 3 · · · bj+1 i′

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · 0 bj′1 bj′2 bj′3 · · · bj′i′

0 ∞ 0 · · · · · · · · · · · · · · · · · · · · ·


(5.13)

(a) (b)

Figure 5.7: Addition of two knots in our notation.

This addition formula is the straightforward consequence of the geometrical procedure of splic-
ing two polyhedra together and then making them both fit into another larger one. We illustrate
this procedure for two P (2, 2) polyhedra in figure 5.7. As can be seen in figure 5.7, this method
chooses a particular cutting point for each polyhedron. It can be shown that the operation of knot
addition # is independent of the cutting point. This is true only within a component of a knot.
If a knot has more than one component, the method of adding described by equation 5.13 is not
general but makes a specific choice. Because such additions rely on the particular structure of the
specific knots to be added, such a formulation can not be made in general.
This new notation can be readily used in calculating some invariants of the knot. For example,

to calculate a polynomial invariant for which we have a state model, we simply replace each ±1
tangle by the 0 or ∞ tangles in all possible ways to yield all possible states of the knot. If a knot
has n double points, this means 2n states. We associate an algebraic factor with the way in which
this replacement is made and then multiply it by an algebraic factor depending on the number of
unknots left (since there are no double points left, this is equivalent to the number of regions in
the resultant projection). All these contributions are added and yield a polynomial invariant of
the knot. The key is to be able to calculate the number of regions and components of a knot given
its matrix.
The number of regions into which the knot projection partitions the plane is important in a

few applications such as the calculation of polynomial invariants, as stated above, and also in
the braiding algorithm which follows. Each vertex has exactly one region lying to its right in the
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polyhedron and thus we may label all these regions by the row and column indices of the associated
vertex. Only two regions are not indexed by this method, these are the two regions with j vertices
directly on the top and bottom of the matrix construction. These will be labeled by the pairs (0, 1)
and (j + 1, 1). Thus the regions may also be represented by a matrix. If the entries rkl are made
to take integer values we may count the number of regions by the following algorithm.

Algorithm 5.2.3 Input: A matrix describing a knot in our notation. Output: A matrix describing
the regions of the knot. Each element of the matrix receives a label from 1 to R, the number of
regions. This gives complete information about which regions of the polyhedron are connected and
how many there are.

1. Begin at the top left of vertex (1, 1) and follow the boundary downwards, as for counting
regions, the orientation of the knot does not matter. Mark the region (0, 1) with a 1, the
current marker, in the region matrix.

2. In following the boundary, one will come to vertex (1, 1); we assess its value and continue.
If we stay in the same region of the polyhedron we continue, if we enter a new region of the
polyhedron, then this new region of the polyhedron belongs to the same region of the knot
as the previous one and thus we mark it with the current marker in the region matrix. The
whole issue at hand is that the regions of the polyhedron are known while we wish to gain
knowledge of the regions of the knot.

3. We continue to follow the boundary until we reach the point of origin.

4. We search the matrix for an unmarked region. If there exist unmarked regions, we increment
our current marker and choose one of the regions as our new starting region and choose a
point upon its boundary as our new starting point. Then, we repeat the algorithm from step
1, marking the region with the current marker.

5. Once no unmarked region of the polyhedron exists, the algorithm is finished. The largest
marker used in the matrix which we have obtained is clearly the number of regions of the
knot. Furthermore, since all connected regions are labeled with the same marker, we have
a complete knowledge of which regions of the polyhedron belong to the same region of the
knot.

The algorithm considers each vertex exactly twice and moves and marks accordingly. Therefore
the complexity is O(n). An algorithm to find the number of components in a knot is similar but
differs in a few details.

Algorithm 5.2.4 Input: A matrix describing a knot in our notation. Output: The number of
components in this knot.

1. Each vertex has four points in which the two polygonal curves intersect B3. These are shown
in figure 5.1. Start at point NW of the vertex (1, 1) and follow the orientation of the knot.

2. We follow the orientation and not the boundary, as in algorithm 5.2.3, marking each point
as we pass it.

3. When we reach the point of origin again, we increment the component counter and look for
an unmarked point.

4. If there is an unmarked point, we begin with step 1, if there is not, we are finished.

This method calculates the number of components considering each point on each vertex once,
therefore the complexity is also O(n). Note that a matrix of only 0 tangles contains i+ 1 unknots
and a matrix composed of only ∞ tangles contains j unknots.
Clearly smaller polyhedra P (i, j) may be embedded in larger ones by filling in the rest with

0 and ∞ tangles. Conversely, if the configuration of the tangles is right, we may delete rows and
columns accordingly. For example, we may create an extra row at the bottom or top of the matrix
containing

(0 0 · · · 0 ∞) (5.14)
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and we may add an extra column at the left or right of the matrix containing only 0 tangles.
Likewise, such columns or rows may be removed without changing the knot type. Thus if a given
knot can be expressed in the polyhedron P (i, j) it can also be expressed in any polyhedron P (i′, j′)
for which i′ ≥ i and j′ ≥ j. An internal row of 0 tangles splits the polyhedron into two parts each
described by the matrix above and below the row of zeros. Thus if two knots should be described
in a single diagram without touching, this is a way in which this may be done.

5.3 Braiding a Knot

Having constructed a new notation for knots, we wish to solve the problem of how to extract a
closed braid from the matrix which is isotopic to the knot described by the matrix. A few algorithms
have been constructed in the past, which convert a knot into a closed braid but they are difficult to
implement because they depend upon topological deformation of the knot projection [97] [22]. The
best known algorithms have been implemented [151] [162] and have complexity O(n2). We shall
present an algorithm which achieves the conversion with complexity O(n), increases the number
of crossings only in a few cases (and then only by a few crossings) and uses a linearly bounded
number of strings. There exists no algorithm to calculate the number of strings which are at least
necessary to describe a specific knot — the braid index of the knot. Because of this, it is not
possible to say how close to the minimum the number of strings used by our algorithm is. The
number of crossings is sometimes increased because it has been found that there are knots for
which any closed braid representative has more crossings than the minimal knot diagram; the knot
5.1 in the standard tables is the simplest example of this [131]. Our algorithm is valid both for
oriented and unoriented knots.

5.3.1 An Example

Alexander’s theorem was proven by showing that every knot can be deformed into a form where
the knot loops around an axis a finite number of times without local maxima or minima with
respect to that axis. If we cut the string along the axis in one place, we obtain a braid. The gluing
back of the cut constitutes the canonical closure. Thus as far as the canonical closure is concerned,
the finding of an appropriate axis is the key. Having obtained a canonically closed braid which is
equivalent to a knot, we may obtain a plait from it by considering the closure curves part of the
braid diagram and moving them into the middle of the braid diagram. The next section gives an
example of this.

A

Figure 5.8: The trefoil knot with an axis for braiding it.

For the rest of this section, we are going to work through an example of our method. Consider
the trefoil knot in figure 5.8. We have drawn an axis through it by the following method: (1) We
drew a line through the projection of the trefoil which intersects every region of the plane at least
once, (2) begins and ends in the infinite region and then (3) assigned the under and overpasses of
the knot under and over the axis by traversing the knot from a random starting point (point A
in the figure) while (4) assigning the passes alternately as we met the crossings of axis and knot.
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Next we perform a coordinate transformation from the knot reference frame (figure 5.8) to the axis
reference frame in figure 5.9 by pulling the axis straight.

A

Figure 5.9: The trefoil knot as it appears after the axis has been straightened from figure 5.8. For
reference the point A has been labeled here again.

We can easily observe from figure 5.9 that the axis is valid; i.e. if we traverse the knot starting
at A we will travel around the axis without local maxima or minima permanently in a clockwise
direction. If we now cut the knot at those points at which it overcrosses the axis and lay out
the ends carefully to either side, we shall obtain the braid σ−1

1 σ−1
2 σ−1

1 σ−1
2 shown in figure 5.10

(a). To get back to the trefoil from this, we perform the canonical closure which is identical to
sealing the cuts made above. This is shown in figure 5.10 (b). This knot has four crossings and
is ambient isotopic to the trefoil thus there is some inefficiency in our braid representation (note
however that there exist knots for which the most efficient braid representation contains more
crossings than their most efficient knot projection [131]). We note that we may lift the arc labeled
in figure 5.10 (b) to remove one crossing. This move also removes a string and so we obtain the
braid of figure 5.10 (c). This braid has two strings and three crossings, it is thus the most efficient
representation of the trefoil as the trefoil must have at least this many strings and crossings. We
conclude that the closure of the braid σ−1

1 σ−1
1 σ−1

1 is ambient isotopic to the trefoil knot. Note that
we may turn the entire figure 5.10 (c) about a vertical axis through its center and thus obtain the
result that the braid σ1σ1σ1 is ambient isotopic to the trefoil also; this, finally, is the well-known
braid representation of the trefoil knot. This is the prototype for a general method which we shall
develop below.

5.3.2 Platting a Knot

The diagram of a knot which is expressed as a closed braid may be naturally divided into two
parts: the braid and the closure. The most important feature of the braid part, for our purpose,
is the requirement that all strings be monotonic increasing in the vertical coordinate, that is they
may only go side to side and never double back on themselves. In this light, consider turning the
polyhedron P (i, j) clockwise by π/2. If the polyhedron does not contain any ∞ tangles, this is
already a canonically closed braid. However, in general, the polyhedron will contain ∞ tangles.
Note that the rotation will make the ∞ tangles look like 0 tangles. In an effort to rid ourselves of
the ∞ tangles, we take the top string in the ∞ tangle and move it all the way to the bottom of
the knot diagram and move the bottom string all the way to the top. In this way, we have created
two extra strings in the braid which are closed in the plait manner. If we do this for all∞ tangles,
we will have a valid braid in the center of the diagram but the closure mechanism will be a hybrid
between the canonical and plait methods. In order to rectify the situation, we move the strings
which are closed in a canonical manner into the center of the braid diagram, thereby creating more
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Lift

(a) (b) (c)

Figure 5.10: The braid which is extracted from figure 5.9 by cutting the trefoil knot at its over-
crossings over the axis and laying out the ends is displayed in part (a). The closure of this braid
is part (b). If we lift the arc labeled in part (b) we obtain the braid in part (c). See discussion in
the text.

strings and more crossings. Once this has been done, we have a fully valid braid closed in the plait
manner which is ambient isotopic to the knot we started with. Figure 5.11 shows the process of
converting the unknot

U =
(
−1 1
∞ −1

)
(5.15)

into the braid σ2σ
−1
4 σ3σ4σ

−1
5 σ−1

6 σ−1
4 σ−1

5 σ4σ6 closed in the plait manner. This procedure is valid
generally and clearly represents a readily implementable algorithm for transforming a knot given in
our notation into a plait. If the original knot is given in the polyhedron P (i, j) and has k tangles of
type∞, then the number of strings required in the plait is 2(i+k+1) but the number of crossings
depends upon the exact configuration.

5.3.3 Laying the Axis

As mentioned before, the transformation of a knot projection into a canonically closed braid centers
around finding an appropriate axis for the string to wind around. This was the central point of
Alexander’s theorem which proves that such an axis may always be found. A ready method for
finding an axis is given in the following algorithm.

Algorithm 5.3.1 Input: A knot projection. Output: A knot projection with an axis around which
the knot winds without local maxima or minima.

1. Begin with enumerating the regions into which the knot projection divides the plane, suppose
there are R of these.

2. Choose two arbitrary points in the infinite region and call them A and B.

3. Draw a line L connecting A and B in such a way that the line intersects every region at least
once.

4. Choose a random point on each of the knot’s components and traverse the knot in the
direction of the orientation once for each component starting at the chosen point. While
traversing label each intersection of L with the knot alternatingly with a + or − sign starting
with +.

5. Interpret each + crossing as an overcrossing of L over the knot and each − crossing as an
undercrossing of L under the knot. The line L oriented from A to B is then a valid axis.
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Figure 5.11: The conversion of a knot into a plait.

This algorithm may clearly be applied to our polyhedron P (i, j). However we have the problem
of the regions which depends upon the exact configuration of the knot. This can be solved by forcing
the line L to intersect every region in the polyhedron and therefore intersecting some regions of
the knot more than once. This is unfortunate but unavoidable if we are seeking a general solution
of the problem. The manner in which this may be done most economically is illustrated in figure
5.12. The line L is the dotted line beginning at point A and finishing at point B. If the polyhedron
has an odd number of columns (as the one in figure 5.12), then the line L is best described by the
dotted line in figure 5.12. If however, the polyhedron has an even number of columns, then the
line L is best described by the dotted line in figure 5.12 from point A to point C and then the
dashed line from point C to point B. If algorithm 5.3.1 is correct then a line drawn in a general
polyhedron P (i, j) according to this example is a valid braiding axis.
We may find an axis which passes through every region exactly once, if possible, by the following

algorithm.

Algorithm 5.3.2 Input: A knot projection given in our notation. Output: An axis which passes
through every region exactly once, if this is possible. If not the output is an axis which passes
through each region at least once.

1. Get the region information as prescribed in algorithm 5.2.3.

2. Construct a graph in which each region is symbolized by a node and two nodes are connected
by an unweighted edge if they are adjacent in the plane.

3. A Hamiltonian circuit is then a path which passes through each region, that is node, exactly
once starting in the infinite region and returning there. If a Hamiltonian circuit exists, so
does an optimal axis. If no Hamiltonian circuit exists, we find an axis using algorithm 5.3.1
which gives an axis which passes through every region at least once.

The advantage is that we will generate a braid with less strings but the Hamiltonian circuit
problem is NP-complete and so the execution of algorithm 5.3.2 is exponential (unless we use an
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A

C

B

Figure 5.12: The axis of the braid through the polyhedron P (i, j).

approximation algorithm or it is shown that P = NP). This fact lends further weight towards
the usefulness of algorithm 5.3.1. The primary usefulness of this algorithm originates in the fact
that the laying of the axis does not depend upon the exact knot configuration, only the labeling
does. Before we continue, we prove that algorithm 5.3.1 always yields a valid axis, this essentially
amounts to proving Alexander’s theorem.

Theorem 5.3.3 Given any knot projection, algorithm 5.3.1 will find an axis about which the knot
is without local maxima or minima.

Proof. Alexander’s theorem [4] states given a knot projection, it is possible to deform it with
respect to a point P in the projection plane that after the deformation a point A which travels
along the knot in the direction of its orientation will travel around the axis defined by P (the axis
is a line perpendicular to the projection plane intersecting it at P ) in a constant fashion, either
clockwise or counterclockwise, for the entire circumnavigation of the knot. We wish to do the
opposite, namely to deform the axis around the knot projection to achieve the same ends. We
can imagine the process of laying the axis as akin to sewing in which we move the needle up from
and down onto the plane. Morton [115] has constructed a similar method to ours which he calls
”threading.”
The knot divides the plane into several regions. If the axis does not intersect a particular

region, the point A will change course during traversing the knot and so the axis must intersect
each region. It is however clearly only necessary for the axis to intersect the region once. Choose
a line in the plane which intersects the axis. With respect to this line we can define an angular
coordinate θ going around the axis. As point A must travel around the axis in a constant fashion
it must, after it passes θ = 0, reach θ = π before it once again reaches θ = 0. This shows that
the axis, in the projection plane, must over and undercross the knot alternately with respect to
A. This fulfills the requirements of an axis and these are assured by algorithm 5.3.1 and thus the
theorem is proven. ✷

5.3.4 Getting the Braid

Having obtained the axis, we must now simply put together all the pieces and construct the braid.
This will be done via the following algorithm.

Algorithm 5.3.4 Input: An axis L in a knot projection given in P (i, j) using our notation.
Output: A braid the canonical closure of which is ambient isotopic to the given knot.

1. Consider an empty polyhedron P (i, j) and label each edge by the row and column index of
the vertex out of which it is emerging on the right side giving it the further label a if it is
the top edge and b if it is the bottom edge. That is the top right hand edge coming out of
the vertex (1, 1) would be (1, 1)a.
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2. All edges which intersect the axis L at a positive crossing are to be numbered in order starting
at point A; suppose there are k of these.

3. Starting at the numbered edges, use the traversal algorithm to follow each edge around the
knot until another positive crossing with the axis L. All edges encountered are to be labeled
with the same number as the original edge.

4. When all edges are numbered, we have identified the individual strings of the braid and
numbered them in order. Assign a distance value of 1 to each edge in the polyhedron.

5. Traverse the knot again as in step 3 but this time stopping at each double point and extracting
which labeled string passes over which other labeled string and at which distance value this
occurs.

6. When the whole has been traversed, we have a list of crossings specifying which strings are
involved, which string crosses over the other and at what distance from the bottom of the
braid the crossing occurs. This information may be used readily to construct a colored braid,
which may be converted easily into an Artin braid word.

7. We assess the string labels around the knot and calculate the permutation associated with
the braid which winds around our axis. If this permutation is different from the permutation
of the braid which we obtained in step 6, the residual permutation must be added to this
braid in the form of extra crossings.

The number of crossings is increased in some circumstances by a small amount in step 7 of
the algorithm. It is a fact that there exist knots of minimal crossing number n which have closed
braid representatives all of which have crossing numbers greater than n [131]. Hence, step 7 is not
a deficiency of the algorithm 5.3.4 but a fundamental necessity.
It is clear from Alexander’s theorem[4] that this algorithm works. The number of strings used

is the number of positive crossings of the axis with the knot which is equal to half the number of
crossings. The number of crossings of the axis with the knot is

Nc =
{

4i+ (2i+ 2)
⌊
j−2
2

⌋
j odd

2i+ (2i+ 2)
(
j−2
2

)
+ 2 j even

(5.16)

where 1x2 is the greatest integer less than x. An analysis of the possibilities in oddness and evenness
of i and j reveals that Nc is always even which is good since we must have an equal number of
positive and negative crossings.
Algorithm 5.3.4 therefore finds a braid with a number of strings which scales linearly in the

number of rows and columns necessary to represent the knot. It is conceivable that a more eco-
nomical way of laying an axis may be found using algorithm 5.3.2 but this has an exponential
complexity. The number of strings may be reduced after the braid has been found using Markov’s
theorem.
The determination of the regions, the laying of the axis, the labeling of the axis crossings, the

labeling of the edges and the extraction of the double point information all take a time proportional
to the number of vertices in the polyhedron ij. The building of the braid from the crossing
information takes time proportional to ij. Therefore the entire algorithm to proceed from a knot
projection to a canonically closed braid has complexity O(ij). This algorithm succeeds in being
readily implementable and in constructing a braid which is reasonably small.

5.4 Translation from Conway’s Knotation

If the knot is given in Conway’s notation [50], we may make the translation by fitting the appro-
priate basic polyhedron into P (i, j) with a specific choice for i and j. Since Conway uses integral
tangles for his notation, this method will yield a matrix with integer number entries. In the equa-
tions below we write Conway’s notation and ours in correspondence, the letters imply integral
tangles and the operatorM is to be understood as the mirror operator from above. The equations
may be verified readily by drawing the diagrams, they have been omitted here for reasons of space.
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Using integral tangles in our matrix notation makes the notation more compact in that fewer
rows and columns are needed to denote a knot but it also makes it more complex since each matrix
element may take many values. We must have a method for separating out the integral tangles
introduced into the notation via equations 5.17 - 5.25.

Algorithm 5.4.1 Input: A matrix describing a knot in our notation in which one or more ele-
ments are integral tangles. Output: A matrix describing the same knot in which all elements are
elementary tangles.

1. Focus attention on the first integral tangle which is not elementary, suppose this has value
sk where s = ±1 is the sign and k is a positive integer greater than one.

2. Create k − 1 columns immediately after the column containing the current integral tangle
and fill each new vertex with a 0 tangle.

3. Suppose the current integral tangle is pmn = sk. Then set pmq = s for n ≤ q ≤ n+ k − 1.

4. Finally exchange the values of elements pm+1 n and pm+1 n+k−1.

It is easy to convince oneself, by drawing a few diagrams, that algorithm 5.4.1 will accomplish
the decomposition. While the number of rows stays constant, the number of columns may explode
if there are numerous integral tangles of high values in the matrix. However this algorithm will
give us a ready means, together with equations 5.17 - 5.25, to convert any knot given in Conway’s
notation into our notation.

1∗a = (a) (5.17)

6∗a.b.c.d.e.f =
(

a c e
M(b) M(d) M(f)

)
(5.18)

6∗∗x.a.b.c.d.y =


∞ a x
∞ M(b) ∞
∞ c ∞

M(y) M(d) ∞

 (5.19)

8∗a.b.c.d.e.f.g.h =
(

a c e g
M(b) M(d) M(f) M(h)

)
(5.20)

9∗a.b.c.d.e.f.g.h.i =

 a d g
M(b) M(e) M(h)
c f i

 (5.21)

10∗a.b.c.d.e.f.g.h.i.j =
(

a c e g i
M(b) M(d) M(f) M(h) M(j)

)
(5.22)

10∗∗a.b.c.d.e.f.g.h.i.j =

 a c e 0 0 ∞
M(b) M(d) M(f) M(h) M(j) ∞
0 0 g i 0 ∞

 (5.23)

10∗∗∗x.a.b.c.d.e.f.g.h.y =


∞ 0 a x
∞ M(e) M(b) ∞
∞ f c ∞
∞ M(g) M(d) ∞
y h 0 ∞

 (5.24)

11∗a.b.c.d.e.f.g.h.i.j.k =


a c e g i

M(b) M(d) M(f) M(h) M(j)
0 0 ∞ 0 ∞
0 ∞ M(k) 0 ∞

 (5.25)
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Chapter 6

The Solar Heating Problem

The sun is like an onion in that it has many layers. The core of the sun has a temperature of about
16 million degrees Celsius and the photosphere (the part that we actually see) only 6000 degrees.
From this information, one would think that the temperature drops as one moves further from the
core of the sun. This is false, however, as the corona, which is outside of the photosphere, has more
than one million degrees. The temperature increases from a few thousand to a few million degrees
in the space of about 500 kilometers. As no nuclear reactions take place in either the photosphere
nor the corona, some other mechanism(s) must be responsible. Ever since the temperature of the
corona was measured [68] in 1939, the solution to this problem is unknown. Many partial solutions
are known, a plethora of models has been created and much effort spent. In this chapter we present
a preliminary investigation of one mechanism.

6.1 Introduction

(a) (b)

Figure 6.1: Two schematic diagrams of the solar corona. Image (a) shows the evolution of a
”typical” region in the corona through the stages: enhancement (A), streamer (B) to helmet
streamer (C and D). Image (b) illustrates the structure of the corona on 19 June 1936 with various
structures. It is shown clearly that some field lines are closed upon the solar surface while others
appear to go to infinity. These images were taken from [119] and [35] respectively.

The corona is that layer of the sun in which the solar wind originates; it is the atmosphere of the
sun and extends for about one million kilometers from the surface of the sun. We usually see the
photosphere and can only see the corona during an eclipse when the moon covers the photosphere
or with a specially built telescope. The huge temperatures in the corona require constant input of
heat for without this input, the plasma would cool down in about one hour. It is a mystery from
whence this heat comes. The corona’s mass is an ionized plasma which acts like a fluid according



6.1 Introduction 83

to many forces: gravity and heat convection, for example. For recent observational data about the
corona, see for example [61] and [155]. Figure 6.1 is an illustration of the structure of the corona.
The most likely source for the heat is what has recently been called the magnetic carpet.

The corona houses large magnetic fields in constant state of change. This carpet will be our
focus. As we are dealing with a magnetic field inside a moving fluid like substance, we call this
magnetohydrodynamics. A field of any kind may be mathematically treated in a variety of ways.
We could consider it a distribution of vectors over space or we could draw lines through space
which represent the integral curves of the field. It is these “field lines” that we shall consider. The
topology of the field is defined as the topology of this collection of field lines. Strictly speaking,
magnetic field lines may not have endpoints as this would give rise to a magnetic monopole (we
shall not go into this heated discussion here but shall assume non-existence of magnetic monopoles
until experimentally falsified). From observations, however, the lines appear to have endpoints as
the lines go deep into the photosphere where we can no longer see them. Because we see only part
of the field lines, we do not know how they connect underneath the surface of the photosphere. As
we can not see the connections of the filaments beneath the photosphere, we are going to assume
that they are not there. This is not to say that what we can not see can not affect the things we
can see but we shall ignore them anyway. What we obtain therefore, are a collection of arches with
footpoints on the photosphere. The surface on which the footpoints dance is covered by convection
zones. These look like huge bubbles of the sort one gets when boiling pudding. The material is
carried from the center of these zones to their boundary. Thus a footpoint is far more likely to
be near or on a boundary of a zone than inside the zone itself. To make matters even worse, the
zones rearrange themselves approximately every ten minutes.

Figure 6.2: The left image shows the solar corona against the disk in one of the hydrogen line
spectra and the right image shows a closeup of a collection of flux tubes where the field lines are
clearly visible.

It is, of course, not obvious at all that we should be able to see field lines at all; they are, after
all, a human intellectual construction. Indeed, we do not see the lines of the field as such but we
see what are called filaments, which are thin and long local collections of plasma at a different
temperature than the surroundings. It is because the temperature in the filament is cooler than
in its surroundings that we can observe them and because of their thin and elongated structure.
they look like lines (see figure 6.2). Conveniently, they are also parallel to the local magnetic field
lines and so they provide a tracer for them. A good guide to what we can see and how to do it is
given in [14].
The filaments are approximately parabolic and typically 70 Megameters long (in contrast to the

sun’s circumference of about 4400 Megameters). They are subject to gravity pulling the material
towards the center of the sun. Pressure builds up driving the material toward the outside. Pressure
ρ(z) at distance z above the convection zone surface is given by

ρ(z) = ρ0e
−gz/kT (6.1)

where ρ0 is the pressure at the surface, g = 1.92 × 1013ms−2 the acceleration due to gravity,
k = 1.38 × 10−23JK−1 Boltzmann’s constant and T the temperature which we will set at one
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Figure 6.3: As an example of a solar loop prominence this photograph shows clearly where the
field lines are and what the whole configuration looks like. From the dark arch at the bottom of
the loop which is the solar surface, one can see how large the prominence is. Most observations
are against the disk of the sun and then we can only see the arches from the top. This image was
taken by Victor J. Lopez on 10 March 1981.

million degrees Kelvin. This defines an outwardly force which gets gradually weaker as the material
is ejected.
The filaments themselves act as strings which relax elastically according to the models described

in chapter 4. The filaments may also reconnect with one another and break into several pieces,
effectively duplicating themselves. It is precisely this reconnection that is thought to generate
the heat. During the evolution of a complex field topology a lot of energy is input and during
reconnection most of that energy is rapidly dissipated into heat.
The filaments are thick tubes which contain hot plasma. The plasma moves along the axis of

the filament from one footpoint to the other. The mass flow along the axis of the tube occurs
at about 0.6 ms−1 near the footpoints on the photosphere [67] and between 1 and 2 ms−1 in
regions 100 km higher [135]. Most models give rise to significant variation of the cross-sectional
area of a filament (thickest at its highest point). This is however not observed. The observed
filaments have thickness profiles which are sometimes thicker in the middle, sometimes thicker at
the footpoints and sometimes of constant thickness, there are even filaments with a constantly
increasing thickness from one footpoint to another [156]. The results of two distinct experiments
(Yohkoh and TRACE) have given rise to these observations with the essential point that the
difference between the thinnest and thickest point along a filament is, on average, only 15 percent
of the thickness of the thinnest part [156] [94]. It is also observed that the density of the plasma
inside a loop is constant over the cross-section [94].
The magnetic field inside a flux tube filament is about 0.2 Tesla (The solar physics community

insists on using non-SI units, so that 1 Gauss = 0.0001 Tesla) which can be measured by a clever
manipulation of the Zeeman effect [139]. The diameter of a flux tube has been measured to lie
between 100 and 300 km [138]. All of these measurements come with large errors and are open to
debate but they give us the order of magnitude region in which the parameter lie.
So called force-free magnetic fields are important in the corona [127] [163]. From the conception

of force-free fields [101], invariants were found [157] and these lead to close investigation of the
properties of these fields [42]. The structure of some such fields was investigated in [60] and it was
found that they behave chaotically and are very unstable. This is particularly important as it is
thought that force-free fields represent steady state minima of the magnetic field in the corona. A
recent investigation of the force-free fields above the sun has lead to new solutions to the force-free
field equations which could be promising [160]. In a simulation there are privileged field lines,
namely those of zero field. This magnetic separator is important as it represents the borderline
between regions of different connectivity. The topological evolution of these is considered in [37].
The filaments store and release energy, accelerate groups of electrons (heat the corona), eject

mass (as flares and coronal mass ejections), emit radiation in the X-ray, EUV, UV, visible and
radio bands and cause mass flow along the axis. These are the major features of a filament and
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Figure 6.4: This schematic shows two filaments with similar axial twist but opposite flow direction.
The diagram is taken from [140] and illustrates the Gold-Hoyle model [70] according to which these
two filaments should reconnect thereby releasing energy and giving rise to a solar flare.

must be explained by a model as required and reviewed in [140]. Many of the physical processes
of flux tube filaments and model are covered in [122] and a good review of the solar dynamo is
given in [66]. The filaments differ in size and there are more small filaments than large ones and
consequently there are more small flares than large ones. One might think that the sum total of
the small events causes the bulk of the heating. This is a controversial point with evidence for
both sides [1]. This suggests that present efforts into simulating and explaining the large events
are well spent.
Reconnecting field lines can be indirectly observed through magnetograms and are thought to

produce regions of canceling magnetic fields; reconnection can also be a mechanism for the observed
mass flow along filaments [100]. A good review on the process of reconnection is given in [128].
This creates the background for the problem which we shall attempt to simulate. As this is a

preliminary study, we shall consider the effects of the simulation on a particular configuration of
arches, namely those of figure 6.2.

6.2 The Temperate Photosphere

One wonders though why the photosphere is so cool when it is next to a blazing furnace. What
does it mean for a gas to have a high temperature? Temperature is a measure of the average kinetic
energy of the gas atoms, that is, a measure of how fast they move. A high temperature gas has
atoms with a larger average velocity than a low temperature gas of the same composition. We thus
infer that the atoms in the corona are moving much more rapidly than those in the photosphere.
For the corona to heat the photosphere, the coronal gas must cause the photospheric atoms

to move faster. It could do so by colliding and mixing with the cooler gas and thus transferring
some of its kinetic energy. At a temperature of a million degrees, the gas in the corona is highly
ionized, which means that neutral atoms no longer exist but rather freely moving electrons and
atomic nuclei. Because electrons are much lighter than protons the hot electrons have very high
speeds and could travel into the photospheric gas to collide with the atoms there, increasing their
velocities. These two heating mechanisms are called convection and conduction, respectively. A
gas at a few million degrees radiates energy; much of it is emitted in the form of very high-energy
x-ray photons. X-ray photons impinging on the photosphere could also transfer energy to the gas
atoms there. This heating mechanism is radiation.
Yet the three traditional methods of heating do not raise the photospheric temperature for a

simple reason. Suppose we had a thermometer that could measure temperatures of millions of
degrees and put it in the corona. In order to make a temperature measurement, the thermometer
must be heated up by the coronal atoms, electrons or x-ray photons impinging upon it. The
corona, however, has such a low density that the thermometer will almost never be hit. So while
the thermometer is technically sitting in a gas that is at a few million degrees it does not know
it. There are just not enough atoms to heat our hypothetical thermometer or the underlying
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photosphere.

6.3 Generating Arches from Footpoints

For ease of use, the simulation will take a set of two dimensional coordinates as the locations for
the footpoints and will generate the arches automatically. Clearly every arch has two footpoints.
Consider a plane which intersects the two footpoints of a particular arch and is perpendicular to
the surface; this specifies the plane exactly. The arch is to be drawn in this plane. We may choose,
for simplicity, to take the distance between the two footpoints and to generate a semicircle with
that diameter. Alternatively and more realistically, we may generate a parabola. To maintain
maximum control over how high the arches are in relation to each other, we generate the parabolas
from the semicircles by scaling such that the highest point of the semicircle is pulled upwards until
it reaches some given parameter; the rest of the arch follows this scaling. This allows us to set
certain profiles or to set the relative heights manually.
It is observed that the footpoints of most flux tube networks are very close to neutral lines in

the magnetic field. For unknown reasons, these neutral lines look very much like integral signs and
could thus be easily simulated using a Bezier line with two control points. We could thus envision
generating footpoints automatically upon input of control points for the shape of a neutral line.
This would require more input from observations however to discover just what the positional
relationship between footpoints and neutral line is.

6.4 The Simulation

Having got the arches, we simulate them. The forces we shall consider for the moment are the
pressure force, elastic force and repulsive force. The pressure force, as given in equation 6.1, is a
height dependent force which tends to increase the size of a filament. The elastic and repulsive
forces, as described in chapter 4, tend to reduce the size of a filament while preventing topology
changes. The forces have to be balanced such that a filament will eventually reach a steady state.
Clearly if one force dominated, the filament would continue to grow or shrink and this is not what
is observed. When reconnection is to be simulated, the repulsive force would have to be switched
off.

Figure 6.5: This figure displays the filaments which we created on the computer using footpoint
data derived from observations. The line data was generated using the author’s BraidLink and the
raytracing was done using PovRay.

We begin with an observation (for example figure 6.2). From this we extract the footpoints
and draw the arches to obtain a computer model of that situation, see figure 6.5. The observation
which lead to the model in figure 6.2 was made in [106] and the model was originally realized using
wire.
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6.5 Mutual and Self Helicity

A field line has a positive and a negative footpoint. If n̂ is a unit normal to the surface of the
sun S, then a positive footpoint is a footpoint for which B · n̂|S > 0 and negative if the inequality
is reversed. We have a null point when B · n̂|S = 0. For a pair of flux tubes, we can have the
two situations displayed in figure 6.6. If the tubes do not cross, then knowledge of the footpoint
coordinates is sufficient; if they do, then we also need to know which tube overcrosses the other.
The mutual helicity between two tubes is given by [15]

Hij = Hji =
ΦiΦj
2π

(α+ β) (6.2)

where Φk is the magnetic flux in tube k and the angles α and β are defined in figure 6.6 (note that
the top tube is labeled 1 in figure 6.6).

Figure 6.6: The angles which must be known to compute the mutual helicity (see equation 6.2)
of two flux tubes are defined here for the two situations possible: crossing tubes and non-crossing
tubes. If the tubes cross, we assume that the top one is labeled 1.

It is also possible for a flux tube to be twisted in itself. This can be clearly seen in figure 6.7.
This internal twist is called self-helicity [158]. If a field line encircles the axis of the ith tube Ti
times, then we define its self-helicity as

Hii = TiΦi (6.3)

A collection of N flux tubes then has a total helicity which is the sum of the pairwise mutual
helicities and the individual self-helicities,

H =
N∑
i=1

Hii +
N∑
i=1

N∑
j=1,j �=i

Hij (6.4)

The matrix with entries Hij is symmetric about the diagonal and can be conviniently used to
summarize the helicities of a large flux tube network as the sum of its entries is the total helicity
of the network. So if a super-network is made up of networks, we can represent the helicity of the
super-network in terms of the helicities of the networks in such a matrix. Consider our current
situation in figure 6.5. The flux tubes can be loosely divided into three groups: small, medium
and large tubes. If we label each group by A, B and C respectively, then the helicity matrix of
the whole super-network is

H =

 HAA HAB HAC

HBA HBB HBC

HCA HCB HCC

 (6.5)

Observationally, it is difficult to decide which flux tube overcrosses the other and also a mea-
surement of flux is not accurate. For our model, we shall assume that all tubes have identical
flux. If a pair of flux tubes has mutual helicity Hij and we were to switch which tube is on top of
the other without changing the position of the footpoints, then the mutual helicity would become
Hij − ΦiΦj . The reason is that the tube labeled 1 in figure 6.6 is the top tube. If this switches,
the angles α and β go to the two unnamed angles in the figure, α′ and β′, say. Clearly, we have
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Figure 6.7: This filament shows clearly the presence of axial twist. (This TRACE image
of AR9077 shortly after the flare erupted is available as Astronomy Picture of the Day from
http://antwrp.gsfc.nasa.gov/apod/ap000720.html.)

α+ β − (α′ + β′) = 2π and so

Hij =
ΦiΦj
2π

(α+ β) −→ H ′
ij =

ΦiΦj
2π

(α′ + β′) (6.6)

=
ΦiΦj
2π

(α+ β − 2π) (6.7)

= Hij − ΦiΦj (6.8)

The most important point to note about helicity is that it is conserved throughout the evolution of
field lines. In observational terms, the change of helicity in the sun occurs at such long timescales
compared to the lifetime of flux tubes that it is, for all practical purposes, conserved indeed.

6.6 The Moving Footpoints

Moving footpoints are thought to be a driving force of magnetohydrodynamic turbulence for the
filaments. Some recent models and results are presented in [72] and references therein. The simplest
way to move the footpoints is to choose an unbiased random walk. The footpoints move on the
two dimensional surface of the photosphere which we regard as a plane. We choose four random
numbers per tube within the range [−δ, δ] where δ is a parameter of the model and add these
numbers to the two coordinates of the footpoints to generate new footpoints. According to a well
known result by Polya, such a random walk in one or two dimensions will eventually return to the
original point; the probability for that to happen in three dimensions is roughly one-third.
An unbiased random walk is not really realistic as the footpoints are usually forced to approach

and then remain on the boundary of the convection granules and as such we require a more complex
random walk. Such random walks are discussed in [41] and will be used in the future to study this
model.

6.7 Conclusions

We have simulated a model of filaments derived observational footpoint data. Our model was very
simplistic but a steady state was achieved and helicity conserved throughout. The balancing of the
forces essentially defines a plane z = a for some constant a which depends on the surface pressure
ρ0 and the strength of the elastic force to which the highest points of the filaments tend. The
simulation is encouraging but more realistic elements are needed.
Firstly the footpoint motion must become more like footpoint motion on a restricted domain

with a preferred direction. The other environmental forces must be taken into account. There are
many of these but the most crucial is the background magnetic field in which the lines sit which
could be simulated by stationary field lines. There must also be more interaction between the field
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lines as the only interaction at present is the repulsive force which is purely artificial in any case.
Reconnection should also be taken into account as should the division of tubes into several tubes.
Computational provision for some of these features has been made already. A more substantial
collaboration with observational astrophysicists is needed in the future to make the simulation
realistic and thus useful.
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[74] Haken, W. 1961 Theorie der Normalflächen Acta Math. 105, 245 - 375. Cited on: 13
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3-satisfiability, 44
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Alexander’s theorem, 17, 20, 75, 77, 79, 80
algebraic algorithm, 61–63, 65, 66
algebraic link problem, see Markov problem
algebraic minimization, 59
algorithm

approximation, 43
efficient, 42
inefficient, 42
intractable, 42
linear, 42
polynomial-time, 42
quadratic, 42
random, 43

ambient isotopy, 12
atomic theory, 11

basic polyhedron, 16
Berger’s algorithm, 50, 60
Birkhoff’s theorem, 28
Birman’s conjecture, 21
braid, 54, 67, see random braid

σi, 17, 18
σ−1
i , 17, 18
algebraic, 52, 53, 53, 54
Artin generators, 17
ascending, 18
band-generator presentation, 41
cable, 45, 46
cables, 45, 45
closed, 67, 75–77, 80
closure, 16, 17, 25, 27
conjugate, 19, 20, 21
descending, 18
exponent sum, 18, 21, 48
from knot, 79
fundamental, 19, 48
fundamental word, 18, 22
geometric, 52, 54, 55
group, 17, 18, 53, 59

center, 22, 51
center (other pres.), 19
center generator, 18
conjugacy problem, 19
generators, 17
left-cancelative, 48
left-cancellative, 51
other presentation, 19
quotients, 21
relations, 17
right-cancellative, 51
word problem, 19

identity, 45
isotopy, 19
labeling, 25–27
length, 34, 41, 45
minimum
elastic, 52
heuristic, 52

negative, 17
oriented, 17
positive, 17, 24, 51
prime, 19
reverse, 18
reverse operator, 18
split, 19
weft, 45, 46
weft braid, 45, 45, 46, 47
weft form, 45, 46, 47
wire, 46
wires, 45, 46

braid index, 13
bridge number, 13

Cayley diagram, 19, 48, 49, 51
Church-Turing thesis, 28
combinatorial problem, 42

instance, 42
intractable, 43
polynomially transformable, 43

complexity, 33, 54
average-case, 43
class NP, 42, 47
class NPC, 43
class P, 42
polynomial-time, 42
worst-case, 42, 43

conjugacy move, 20
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Garside algorithm, 21
continued fraction, 69
Conway’s basic theorem, 69
critical pair lemma, 29, 36

cyclic, 36, 37
crossing number, 55, 65

minimum, 11, 13, 65
cyclic permutable, 34, 34
cyclic permutation, 26, 33, 34
cyclic word, 34, 35

decision problem, 42
Diamond lemma, see Newman’s lemma
DNA, 52

elastic
energy, 52
forces, 52
relaxation, 52

embedding, 11, 14
energy, 53, 63, 63, see knot energy

functionals, 53
minimum, 65

equilibrium, 53
equivalence move, 20
exchange move, 21

far commutation, 60
feedback edge set, 44
fluid

knotted, 53
force

constrained, 57, 58, 61–63, 65
crossing number, 61–63, 65, 66
feature, 63

crossing number minimizing, 57
curvature, 57, 58, 59, 61–63, 65, 66
elastic, 57
repulsive, 57, 62

fundamental group, 14, 15

Garside
exponent, 19
normal form, 50, 51
remainder, 19

group, 28
center, 24
combinatorial theory, 28
conjugacy class, 30, 39
conjugate, 24, 33, 34, 38
equivalence class, 30
free, 33, 41
free products, 41
HNN-extensions, 41
infinite cyclic, 26
isomorphism, 14, 15

presentation, 28
grouping by swapping, 44, 44
Grzegorczyk arithmetical hierarchy, see Kleene

arithmetical hierarchy

Haken, 13
Hamiltonian circuit, 78
Hemion’s algorithm, see 3-manifold classifi-

cation
heuristic algorithm, 60
Higman Embedding Theorem, 28
homeomorphism, 14
Homfly polynomial, 13
Hopf link, 12, 16, 25

ideal knot, see knot
invariant, 13, see energy

bounded, 53
complete, 13, 14, 21
component number, 13
Gauss linking integral, 53
helicity integral, 53
incomplete, 13
isotopy, 52
minimum, 13
minimum crossing number, 53
polynomial, 13
polynomials, 53

invariants
minimum crossing number, 55

inversion, 44, 44, 45–47
inversions, 44
isomorphism, 14
isomorphism problem, 28, 28

Jones polynomial, 13, 16

Kleene arithmetical hierarchy, 28
knot, 11, 14, 80, 81, see random knot

2-bridge, 69
amphicheiral, 21
classification, 11–13, 15, 21
complement, 13, 14, 14, 25, 27
component, 15, 25, 73, 74
composite, 13, 21
diagram, 13
energy, 53
fundamental group, 25, 27
group, 15
Wirtinger presentation, 15
Wirtinger representation, 25, 27

ideal, 53, 65
invertible, 21
isotopy, 15
isotopy problem, 13
longitude, 15, 15, 25
matrix form, 70
meridian, 15, 15, 25
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meridian-longitude system, 15, 25
trivial, 26

nugatory crossing, 20
oriented, 72
peripheral group system, 25
prime, 11, 13, 21
factorization, 21

split, 21
sum, 13, 73
table, 11, 12, 16, 52
type, 52

knot notation, see knotation
knotation, 16, 69, 71

Conway, 16, 67, 72, 80, 81
Dowker & Thistlethwaite, 16

Knuth-Bendix completion, 29, 30, 38

L-move, 20
Lagrangian, 56, 59, 65
lexicographic order, 19, 39
link, see knot
linking number, 14

magnetic field, 52
accretion disk, 52
continuous, 53
coronal loop, 53
lines, 65
reconnection, 53
star, 52

Markov, 20
Markov equivalence, 20, 20, 21, 25
Markov move, 20, 20, 21
Markov problem, 20, 20, 21, 24
Markov’s theorem, 20, 20, 21, 80
Michelson and Morley, 11
minimal equivalent braid, 45
minimization problem, 41
minimum

global, 53, 63
local, 53, 63, 65

minimum crossing number, see crossing num-
ber, see invariant

minimum string number, 21
minimum word problem, 51
monoid, 28, 38

Newman’s lemma, 29, 36, 36
non-minimal braids, 44, 47
NP-complete, 28, 41, 60, 78
NP-completeness, 42, 43, 43, 45, 47

reduction, 43
restriction, 44, 44

peripheral group system, 14, 15
permutation, 44–47

identity, 44
plait, 67, 76

closed, 76
from knot, 78

polyhedron, 69, 71, 76, 79
axis, 77, 79
basic, 69, 80
matrix, 70, 72, 80
edge, 70
vertex, 70

region, 73, 74
universal, 70

polymer, 52
polynomials, 52
program, 42

random braid, 52–54, 61, 65
random knot, 52
recursive set, 28
recursively enumerable set, 28
reduction ratio, 60–62
Reidemeister, 13

moves, 12, 13, 17, 20
relaxation, 55, 57

satisfiability, 43, 44
search problem, 45
shortlex ordering, 39
simulation

efficacy, 61
efficiency, 62

skein relation, 13
solar flare, 53
solar physics, 53, 65
sorting does not minimally partition, 44, 44,

47
stabilization, see Markov move
statistical mechanics

exactly solvable model, 52
surgery, 12

Tait, 11, 52
tangle, 16, 67, 67

classification, 69, 69
elementary, 68, 68, 69, 81
equality, 67
fractional, 68, 68, 69, 69, 70
integral, 68, 68, 69, 80, 81
irrational, 68, 69
rational, 68, 68, 69, 70
sum, 68

tangles, 69
elementary, 72

term rewriting systems, see trs
tetrahedron, 14
topological complexity

measure of, 52
topology

change, 57

Patrick D. Bangert
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torus knot, 15
trefoil, 71, 71, 72
triangulation, 14
trs, 27, 27, 28, 35

c-obstruction, 35, 36, 38
complete, 28, 29, 31, 38
confluence, 28, 29, 35, 36, 40
undecidability, 29

constants, 27
critical pair, 29, 29, 32, 36, 37, 40
cyclic completeness, 35, 38
cyclic confluence, 35, 36, 40
cyclic critical pair, 36, 37, 40
cyclic local confluence, 35, 36–38
cyclic overlap, 36, 39
critical, 36
non-critical, 36

cyclic termination, 35, 35, 36, 38, 40
cyclic word, 35, 37, 39
equivalence, 32
final form, 38
joinability, 27
length metric, 35
length reducing, 35
local confluence, 28, 32
normal form, 28
overlap, 29, 32, 36
critical, 29
non-critical, 29

redex, 28, 36, 37
reduct, 28, 32, 37
reduction order, 29, 29, 30, 35
basis, 29
closure, 29
compatibility, 29

rewrite chain, 28
rule, 27
substitution, 27
term, 27
termination, 28, 29, 32, 35, 36, 38
undecidability, 29

total order, 35
weight metric, 35
weight reducing, 35
word, 27

Turing Halting Problem, 29, 42
Turing machine, 28, 29, 42

deterministic, 42
non-deterministic, 42

unknot, 12, 13, 77
recognition, 13

unknotting number, 16

vertex cover, 44
vortex lines, 52

Waldhausen’s theorem, 14

Whitehead link, 12
word problem, 14, 19, 21, 24, 28, 28, 29–31,

33, 38, 39, 54

Yoder’s theorem, 38, 38
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