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Unified Field Theory

Tim Joseph
In the beginning there was Aristotle,
And objects at rest tended to remain at rest,
And objects in motion tended to come to rest,
An soon everything was at rest,
And God saw that it was boring.

Then God created Newton,
And objects at rest tended to remain at rest,
But objects in motion tended to remain in motion,
And energy ws conserved and momentum was conserved and matter was con-
served,
And God saw that it was conservative.

Then God created Einstein,
And everything was relative,
And fast things became short,
And straight things became curved,
And the universe was filled with inertial frames,
And God saw that it was relatively general, but some of it was especially
relative.

The God created Bohr,
And there was the principle,
And the principle was quantum,
And all things were quantized,
But some things were still relative,
And God saw that it was confusing.

Then God was going to create Fergeson,
And Fergeson would have unified,
And he would have fielded a theory,
All all would have been one,
But it was the seventh day,
And God rested,
And objects at rest tend to remain at rest.
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Abstract

We introduce quantum field theory on curved space-
times and consider the fields of Klein and Gordon, Dirac
and Maxwell upon black hole spacetimes. Assymptotic
field solutions are found for all of these fields and par-
ticle emission from the vacuum derived on their basis.
A new physical effect of the emission of scalars from a
cluster of black holes is found and discussed. The emis-
sion spectra are compared and analysed with regard to
their physical content, observability and the information
paradox. No prior knowledge of quantum field theory or
general relativity is necessary.



Preface

”Essentia non sunt multiplicanda praeter necessitatem.”

- William of Ockham.

Before Hawking’s prediction in 1975 that black holes radiate energy [17],
a black hole was the ultimate rubbish bin. Everything thrown in would never
emerge again and communication from the inside was utterly impossible. The
combination of general relativity and quantum field theory brought about the
prediction that black holes do radiate their energy content away in the form
of particles. This prediction has caused the rising of the black sun on the
heavens of eternity.

The result caused a great stir in theoretical physics because it was the
first concrete prediction of a limiting case of the elusive theory of every-
thing. Nevertheless much is to be learned about the radiation of black holes.
The Hawking effect, strictly refers to the emission of massless scalars from a
Schwarzschild black hole, this is the simplest situation imaginable. One would
need to investigate the emission of other particles from a more general black
hole to observe some features that may lie hidden in the approximations. This
is the purpose of the present investigation.

Since we are bound by constraints of time and space for this report, certain
assumptions must be made of the readership of this article. Knowledge of
basic quantum mechanics, classical mechanics (particularly the Lagrangian
and Hamiltonian formulations) and the variational calculus is essential. A
number of branches of mathematics such as real and complex analysis, partial
and ordinary differential equations will be used frequently and knowledge of
them is necessary. No knowledge of quantum field theory, relativistic quantum
mechanics, or general relativity will be assumed whereas it would be very
helpful if the reader had a basic grounding in these theories.

The necessary elements of quantum field theory and general relativity will
be reviewed in the first chapter. This is a brief introduction or reminder so



vii

that the formalism of the following chapters is set in context. The concept of
a black hole will be introduced in some detail. Chapter one also introduces
the general basis for quantum field theory on curved spacetimes to the extent
that we will make use of it.

Chapter two will discuss the scalar field on a general black hole spacetime.
Chapter three will do the same for the Dirac and Maxwell fields. Chapter four
treats the scalar field on a spacetime of a cluster of N black holes. Chapter
five considers the gravitational and self interaction of quantum fields on a
general black hole spacetime. Chapter six compares the various results of
the preceeding chapters mathematically and graphically. Some important
features of the emission spectra are discussed, including a new, unpublished
effect discovered as part of this project. The famous information paradox will
then be discussed and some motivations and directions for future research
suggested.
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Appendix A

Introduction

”The miracle of the appropriateness of language of
mathematics for the formulation of the laws of physics
is a wonderful gift which we neither understand nor de-
serve.”

- Eugene Wigner.

Relativistic quantum mechanics is a very successful theory but it is dif-
ficult to perform calculations involving many particles. This limitation gave
the initial impetus to generate quantum field theory (QFT). Treating many
particles as one entity, the field, simplifies the mathematics considerably. One
may quantise the theory by introducing creation and annihilation operators for
field states in the same manner as for the non-relativistic quantum mechanical
harmonic oscillator. This approach is particularly useful when dealing with
the electromagnetic field. Photons emerge very naturally from the quantisa-
tion of the Maxwell field, whereas they would be difficult to treat normally
since particle number is not conserved for bosons [4].

QFT is a particularly successful theory and builds the theoretical basis
of modern particle physics. Quantum electrodynamics (QED), an element of
QFT, treats the interaction of the electromagnetic field with the fields for
the atomic particles, the Dirac field. Nevertheless, QFT integrally assumes
the background spacetime of special relativity and is thus not immediately
compatible with general relativity (GR). The ’marriage’ of QFT and GR
is a major goal of theoretical physics and is thought to take the form of
a theory of everything in which all phenomena could be explained. This
unification of the interactions or forces has proven elusive until now. However,
as long as the curvature of space is small compared to the wavelength of the



2 General Relativity and Black Holes

field under investigation, we may treat the gravitational field classically, that
is via general relativity. The only basic change is then to render the field
equation into a covariant form in a general curved spacetime and deriving
a new quantum field theory in curved spacetime (QFTCS) from it. This
work is still progressing but much has been done by a variety of people.
Because curved spaces are much more complicated than flat ones, one may
expect a myriad of new physical effects from the theory. Most new things are
very formal or esoteric and it is difficult to interpret the intricate formalism
physically but one effect stands out: the Hawking effect. This effect predicts
that black holes are not black; that they emit particles continuously due to a
property of the solutions of the field equations of QFTCS.

Elements of QFT and GR are reviewed below as a brief introduction or
reminder for the reader. They are not pedagogical treatments but will be
sufficient if one simply wishes to read this exposition of the Hawking effect.
Only those parts of QFT and GR, which are necessary for this paper, will be
reviewed. A short discussion of the formalism of QFTCS is also given in the
third section of this chapter. This is, by no means, complete but serves as a
sufficiently detailed introduction to the material treated later.

A.1 General Relativity and Black Holes

”Black holes are the bungholes of space.”

- Butthead.

A space is principally characterised by the function which calculates the
distance between two points, the metric or line-element . When this is not
equivalent to Pythagoras’ theorem, we have a non-Euclidean geometry in
which the last of Euclid’s axioms (two parallel lines never cross) does not
necessarily hold. This theory was first proposed by Riemann [28] and so a
large class of these spaces are known as Riemannian spaces and thus we have
a Riemannian geometry in them. According to Riemann, the metric is the
main characteristic of a space; in addition to its dimensionality and boundary
properties. In general, a line element dl2 may be written

dl2 = gµνdxµdxν (A.1)

where gµν is known as the metric tensor. In (A.1), we have made use of
the Einstein summation convention which dictates to perform a sum across
all those indices appearing once as a subscript and once as a superscript in
one term of an expression; thus there is a double sum implied in (A.1). For
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our purposes, we will be working in a four-dimensional spacetime and hence
µ, ν ∈ {1, 2, 3, 4}. If we are working in spherical polar coordinates, we may
identify the coordinates xµ ∈ {t, r, θ, φ}.The special case of the metric tensor

gµν = ηµν ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (A.2)

is the Minkowski metric tensor [24] and specifies special relativity, whereas a
general metric tensor, in which all the elements may be functions of all xµ,
leaves us in the domain of general relativity proper.

If one knows gµν and the matter content of spacetime, then one may
use general relativity to predict events in the same manner as one would use
Newton’s laws in ordinary classical mechanics. We shall not delve into general
relativity but take it and its solutions for granted. For a full treatment of the
theory and its solutions see [25]. Indeed, we do not need to make use of the
Einstein field equations at all, we will be concerned only with specific metrics.

There are several methods of deriving the expression for the metric tensor
of a single massive object with a non-zero electric charge Q and angular
momentum per unit mass a ≡ J/M . We shall not derive it, but state it

gµν =



B

Σ
− 1 0 0 −aB sin2 θ

Σ
0

Σ
∆

0 0

0 0 Σ 0

−aB sin2 θ

Σ
0 0

[
r2 + a2 +

a2B sin2 θ

Σ

]
sin2 θ


(A.3)

where

∆ ≡ r2 − 2Mr + a2 + Q2 (A.4)

Σ ≡ r2 + a2 cos2 θ (A.5)

B ≡ 2Mr − Q2 (A.6)

This is known as the Kerr-Newman solution [25]. Two other solutions may
be derived from it: The Kerr solution by setting Q = 0 and the Schwarzschild
solution by, in addition, setting a = 0. All three solutions represent black
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holes. There exists a famous theorem that black holes have no hair [7] , which
means that the three parameters M , a, and Q completely describe the most
general black hole possible. The black hole, in this manner, represents the
most ’perfect’ object in the universe. There is no complication by a very large
number of constituent particles and complex internal dynamics. The above
metric for the Kerr-Newman solution to Einstein’s field equations is thus the
most general metric for a black hole and will be a central piece of the following
investigations. First, we need to determine a few properties of the metric.

A black hole is black since nothing may escape its gravitational pull; we
shall see later that this is not completely true, but in the classical limit it
is. The distance away from the centre of the hole (the origin r = 0 in (A.3))
where light may just escape from the hole is known as the event horizon. This
distance rE may be determined by solving the equation ∆ = 0. Since this is
a quadratic, there are two solutions, the larger is rE and the smaller is known
as the Cauchy horizon rC . The Cauchy horizon is important in the theory of
black holes, but will not be important here; it suffices to say that rC = 0 only
for the Schwarzschild solution. For the event horizon, we obtain

rE = M +
√

M2 − a2 − Q2 (A.7)

We will also need to determine the inverse of the metric tensor, which is
defined by gλµgµν = δλ

ν , where δλ
ν is the Kroenecker delta symbol. So the

inverse of the metric tensor is numerically equivalent to the inverse of the
matrix representation of the tensor. Equally well, we may denote g ≡ det gµν .
Thus we find

gµν =



a2 sin2 θ − (
r2 + a2

)2
∆Σ

0 0 − aB

∆Σ
0

∆
Σ

0 0

0 0 1
Σ 0

− aB

∆Σ
0 0

Σ − B

∆Σsin2 θ


(A.8)

g = −Σ2 sin2 θ (A.9)

In his exposition of non-Euclidean geometry, Riemann invented a tensor
that completely specifies the curvature of a space. This Riemann tensor Rα

βγδ

may be calculated from the metric alone via the connection coefficients or
Christoffel symbols Γα

βγ

Γα
βγ =

1
2
gαµ

(
∂gµβ

∂xγ
+

∂gµγ

∂xβ
− ∂gβγ

∂xµ

)
(A.10)
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Rα
βγδ =

∂Γα
βδ

∂xγ
− ∂Γα

βγ

∂xδ
+ Γα

µγΓµ
βδ − Γα

µδΓ
µ
βγ . (A.11)

When Rα
βγδ = 0, the space is called flat and is similar to the space of special

relativity in which two parallel lines will never cross. For black holes, we can
determine that the Riemann tensor satiesfies

lim
r→∞Rα

βγδ = 0 (A.12)

Thus the black hole spacetime is assymptotically flat and special relativity is
valid an infinite distance away from the black hole. We shall see that this is
an important property later on.

To aid visualisation of black holes, Roger Penrose developed the method
of conformal diagrams in which the entire spacetime may be drawn in a fi-
nite picture. He achieves this by transforming the metric tensor through a
conformal transformation defined by

gµν → Ω2(x)gµν (A.13)

where the function Ω2(x) is known as the conformal factor. For a Schwarzschild
black hole, we may obtain a simple picture of the spacetime shown in figure
1.1.

u
=
∞

v = −∞

v =
0

u
=

0

u
=

0

v =
0

v =∞

u
=
−∞

r = 0

r = 0

III

III

IV

i0 i0

i+ i+

i− i−

Figure 1.1: The conformal representation of the
Schwarzschild spacetime. The dashed lines represent the
singularity and the solid lines the future and past event
horizons. Physical particles are limited to the red dia-
mond and the two blue curves show possible trajectories
of particles.
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Black holes, as we know them, were first predicted by Karl Schwarzschild
who discovered that the Schwarzschild metric was an exact solution to Ein-
stein’s equations for a spherically symmetric massive object. Through the
mathematical discovery of the event horizon from this solution, the idea of
black holes was re-invented from Descartes idea that a sufficiently massive
object should be able to bend lightrays so that they must return to it after
a finite distance. For many years, black holes were an entirely theoretical
construct kept alive by the success of general relativity in other areas. Today
there is much evidence that they actually exist at the centre of galaxies, that
they might be quasars and responsible for gamma-ray bursters. The reader is
directed to the literature for this information [36] [27] [23].

This completes the general relativity we must know to proceed within
the realms of this project. All we will need to do later is to generalise the
d’Alembertian and Dirac operators to curved spacetimes and in particular to
the Kerr-Newman spacetime characterised by the metric (A.3). Using further
analysis of this metric and making use of some general relativity proper, one
may derive many properties of black holes including many interesting features
of particle trajectories, these are outside the scope of this project but are
treated extensively in [8].

A.2 QFT in Minkowski Space

”Science is built up of facts, as a house is built of stones;
but an accumulation of facts is no more a science than
a heap of stones is a house.”

- Henri Poincaré.

To construct the theory, we write down a Lagrangian L(q, q̇) for some
generalised coordinate q, where q̇ = dq/dt. From the Lagrangian, we construct
the action A by

A =

t2∫
t1

L(q, q̇)dt. (A.14)

The action principle then requires that A be stationary, i.e. that δA = 0.
This requirement gives us the Euler-Lagrange equations of motion [14]

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (A.15)
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Often, we may express the Lagrangian in terms of a Lagrangian density L
such that

L ≡
∞∫

−∞
d3xL

(
φ,

∂Φ
∂xµ

)
(A.16)

where Φ is the field and the xµ are the field coordinates. Then (A.15) becomes

∂

∂xµ

∂L
∂ (∂Φ/∂xµ)

− ∂L
∂Φ

= 0. (A.17)

In QFT, we work mainly in terms of L and so (A.15) is the equation for the
field that we must consider relevant.

In principle, the aim is to solve the Euler-Lagrange equations (A.17) for Φ.
Once Φ has been found, one knows everything about the system since Φ is the
equivalent of the wavefunction of quantum mechanics. In general, of course,
this can not be done and different methods need to be found to extract the
required information. Many such methods have been developed and the reader
is advised to seek out specialised textbooks for them, such as [5]. To really
be a QFT, the theory must also be ’quantised’ so that an interpretation of
the solutions to (A.17) in terms of particles becomes possible. This is usually
done by finding a particular solution and then writing the general solution
as a sum over these particular solutions modified by unkown functions which
may be interpreted (for the correct choice of particular solution) as creation
and annihilation operators in a very similar way as one does for the simple
quantum mechanical harmonic oscillator. Then one may determine the energy
spectrum and other properties of the field without ever finding a completely
general solution to (A.17) in closed form.

To illustrate this, let us choose a specific form for L

L
(

Φ,
∂Φ
∂xµ

)
=

1
2

(
∂Φ
∂xµ

∂Φ
∂xµ

− m2Φ2

)
, (A.18)

the Euler-Lagrange equations (A.17) give us the Klein-Gordon equation(
�2 + m2

)
Φ = 0 (A.19)

where �2 is the d’Alembertian operator, which is given by

�2 =
∂2

∂t2
−∇2 (A.20)

in Minkowski space, where ∇2 is the Laplacian.
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For a physical theory, we must not choose a ’free-field’ Lagrangian as,
for example, in (A.18) but must add an interaction term. Only through
interactions may a theory be verified and become useful, so we express

Ltot = Lfree + Lself + Lint (A.21)

where Lint is the interaction of the field with other fields or external influenc-
ing mechnisms and Lself represents the self-interaction of the field. Lint is
very general and changes between different situations but Lself is most often
expressed as

Lself = −1
4
λΦ4 (A.22)

which is imaginatively known as the λΦ4 theory. The solutions to the field
equations become more difficult now, of course, but one may determine some
real physical effects. Using different expressions for Lint, one may treat the
weak, strong and electromagnetic interactions quantum mechanically [33].

A.3 QFT in Curved Spacetime

”We hope to explain the entire universe in a single, sim-
ple formula that you can wear on your T-shirt.”

- Leon Lederman.

We wish to combine QFT and GR in such a way that the particle fields are
quantised and the gravitational field is taken into account simply through the
incorporation of a different, coordinate-dependant metric tensor. In general,
this is a complicated procedure because it is not immediately obvious how
the interpretation generalises to a curved space. This is primarily because
one needs to define a direction along which one can usefully define a positive
frequency [38]. This direction ς is usually chosen such that the field is an
eigenfunction of the Lie derivative along that direction [32]

L̃ςΦ = −iωΦ (A.23)

One may show that a so-called Killing vector is always a candidate for ς
and it is in general assumed that one must have a Killing vector in order to
have a solution to (A.23). These Killing vectors are solutions to the differential
equation [31]

∇̃αςβ + ∇̃βςα = 0 (A.24)
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where ∇̃α is the covariant derivative. In general, (A.24) has no solutions but
in the case of asympotically flat spacetimes, a Killing vector may always be
found and the interpretation of the quantum field theory becomes easier. For
black holes, there are two Killing vectors

ς =
∂

∂t
,

∂

∂φ
(A.25)

The first vector in (A.25) is a good choice since it is identical to the choice
of Killing vector made in ordinary QFT. Thus the interpretation is identical
when a solution of the field equations is found. The question of interpretation
is an intricate one for spacetimes that do not have a Killing vector ς = ∂

∂t
and becomes generally impossible for spacetimes that are not assymptotically
flat. Since black holes satisfy both of these requirements, we may proceed to
formulate QFTCS.

First, one must define a curved space Lagrangian density L and then find
the field equation via the Euler-Lagrange equations

∂

∂xµ

∂L
∂ (∂Φ/∂xµ)

− ∂L
∂Φ

= 0. (A.26)

Equally, we may generalise the scalar product between two fields

(Φ1,Φ2) = −i

∫
Σ

Φ1∂µΦ∗
2 (−gΣ)

1
2 nµdΣ (A.27)

where nµ is a future-directed unit vector normal to the spacelike hypersurface
Σ, dΣ is the volume element in Σ and

Φ1∂µΦ∗
2 = Φ1∂µΦ∗

2 − [∂µΦ1] Φ∗
2 (A.28)

is the Wronskian with respect to xµ. It can be shown that (A.27) is inde-
pendant of the choice of Σ as long as it is a Cauchy surface in a globally
hyperbolic spacetime [16]. For the case of black hole spacetimes, a suitable
choice for Σ is a sphere centered on the black hole. The simplest possible
choice for nµ is then nµ = (1, 0, 0, 0).

It is possible to find a complete set of orthonormal mode functions {ui}
with respect to the scalar product (A.27) which satisfy (A.26). The orthonor-
mality properties can be expressed as

(ui, uj) = δij , (u∗
i , u

∗
j ) = −δij , (ui, u

∗
j ) = 0, (A.29)

where ∗ indicates complex conjugation. Since the set {ui} is complete, we
may expand the field in the ui

Φ =
∑

i

(
aiui + a†

iu
∗
i

)
. (A.30)
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where we impose the covariant quantisation via the commutation relations

[ai, a
†
j ] = δij , etc. (A.31)

and † indicates Hermitian conjugation. We can also find another complete
set {ūi} which obeys the relations (A.29) - (A.31). With an analogy to the
harmonic oscillator, it can be seen that the operators ai and a†

i (and of course
āi and ā†

i ) are the annihilation and creation operators respectively. Since
the sets {ui} and {ūi} are different complete sets, they both define different
vacuum states (i.e. the states which can not be further annihilated.)

ai |0〉 = 0, āj |0̄〉 = 0, ∀ i, j ∈ I+ (A.32)

The action of the creation operator a†
i upon the vacuum state |0〉 would then

result in the one-particle state in the mode ui. Similarly because of the
completeness property, we may expand one set in terms of the other

ui =
∑

j

(
α∗

jiūj − βjiū
∗
j

)
ūj =

∑
i

(αjiui + βjiu
∗
i ) . (A.33)

Such a transformation is known as a Bogolubov transformation [2], where the
matrices αij and βij are the Bogolubov coefficients. By projecting out, we
find that

αij = (ūi, uj) βij = − (ūi, u
∗
j

)
(A.34)

and the expectation value

〈0̄|Ni |0̄〉 = 〈0̄| a†
iai |0̄〉 =

∑
j

|βji|2 (A.35)

where Ni = a†
iai is number operator with respect to the set {ui}. The physical

interpretation of (A.35) is that the vacuum state |0̄〉 of the set {ui} contains∑
j |βji|2 particles in the mode ui. In order to investigate particle creation

from the vacuum state, the principal aim must be to evaluate the Bogolubov
coefficient of the second kind βij . Indeed (A.35) is the emission spectrum of
the spacetime from one set of modes into another. If we choose the two sets
of solutions such that they have added physical significance, we may be able
to attach more meaning to the emission spectrum between these two families
of modes. For example, if we choose

ui = u
(in)
i = lim

t→−∞Φ ui = u
(out)
i = lim

t→∞Φ (A.36)

we may be able to interpret (A.35) as genuine particle creation by the space-
time curvature. This occurs because we have defined both sets of modes in
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terms of the same general solution in different limits of time. The ”in” modes
u

(in)
i are those in the assymptotic past and the ”out” modes u

(out)
i are those

in the assymptotic future. In Minkowski space, these limits would be identical
and thus no particle creation would occur, however in curved spacetime this
may not be true. It may very well be that the ”in” and ”out” modes have
a different form and can thus be non-trivially expanded in terms of another
giving nonzero Bogolubov coefficients. An observer far away from the black
hole would see the ”out” states, which would contain a different number of
particles than the ”in” modes. This is particularly strange for the vacuum
state which would not be empty with respect to the ”in” vacuum. During
the transition through the black hole, the vacuum state has gained particles.
This is a particle creation by the spacetime curvature itself and this is what
we shall seek to find later. In relativistic quantum mechanics, one requires
positive frequency solutions to remain with positive frequency at all times
and vice versa. This is in an effort to keep an electron from changing into a
positron randomly. Here, we may get a mixed state of positive and negative
frequency modes and thus we have created particles.

For definiteness, let us take the scalar field and start with the Lagrangian
density

L =
1
2

(−g)
1
2

[
gµν ∂Φ

∂xµ

∂Φ
∂xν

− m2Φ2

]
(A.37)

Via (A.26), we obtain the curved spacetime equivalent of the Klein-Gordon
equation (A.19) (

�2 + m2
)
Φ = 0 (A.38)

For a general metric, the d’Alembertian becomes

�2Φ = (−g)−
1
2 ∂µ

[
(−g)

1
2 gµν∂νΦ

]
(A.39)

where g is given by (A.9) and ∂µ ≡ ∂/∂xµ. For the scalar case, we would need
to solve (A.38) for the ”in” and the ”out” modes and then find the Bogolubov
coefficients of the second kind to get the particle creation spectrum.

The creation of particles from the vacuum may be pictured by an electron-
positron pair creation near the event horizon of a black hole. The positron
becomes trapped and the electron escapes, thus it would seem as if an electron
has been created. See figure 1.2 for an illustration and the Feynman diagram
for such a process.
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�

� �

e+
� �

e−

t

x

e− e+

Figure 1.2: An electron-positron pair is produced from
the vacuum near the event horizon of a black hole. The
negative energy positron falls into the black hole, while
the positive energy electron escapes. This is one possi-
ble interpretation of the particle emission properties of
the black hole spacetimes. The appropriate Feynman
diagram is drawn on the lower right corner [4].



Appendix B

The Klein-Gordon Scalar
Field

”I may not understand it, but it sure looks important to
me.”

- Ian Stewart.

The scalar field was originally proposed independantly by five different
groups in 1926 as the theory for an spinless, neutral and massive particle [15]
[12] [19] [22] and [10]. It was also proposed by Schrödinger when he rendered
his famous equation compatible with relativity. So it is really to be thought of
as the relativistic theory of the same particle that one considers in quantum
theory when one solves the Schrödinger equation. Through a twist of history,
only the names of Klein and Gordon have become attached to the equation.
The term scalar is used here to indicate that the solution is one function and
not a spinor or tensor as in the case of the Dirac or Maxwell fields. This
automatically means that the particle must be spinless. One may treat a
charged, spinless particle via a complex superposition of two Klein-Gordon
fields, but we shall not treat such an extension here. For a lengthy discussion
of the field in Minkowski spacetime, see [33].
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B.1 The Scalar Field in Schwarzschild Space-
time

”I know that hardly any physicists believe that the grav-
itational forces can play any part in the constitution of
matter. The physicist always argues that the forces are
too small. This reminds me of a joke. An unmarried
woman had a child and the family was greatly humil-
iated. So the midwife tried to console the mother by
saying: ’Don’t worry so much, it’s a very small child!’”

- Albert Einstein.

The Lagrangian for the Klein-Gordon field is given by (A.37) and the
metric for the Schwarzschild geometry is obtained by setting a = Q = 0 in
the expressions (A.3) - (A.9) for the Kerr-Newman geometry . We then get
the Klein-Gordon equation from (A.38)

[
r3

2M − r
∂2

t + ∂r [r (r − 2M) ∂r]
]

Φ

+
[

1
sin θ

∂θ (sin θ∂θ) +
1

sin2 θ
∂2

φ + m2r2

]
Φ = 0 (B.1)

This is a separable equation and so we obtain

Φ (t, r, θ, φ) = e−iωtR(r)Yln (θ, φ) (B.2)

where we have chosen the time dependancy such that (A.23) is satisfied for the
Killing vector ς = ∂/∂t. The functions Yln (θ, φ) are the spherical harmonics
and the radial function satisfies

∂2
rR +

2 (r − M)
r (r − 2M)

∂rR +
[
m2r2 − l (l + 1) +

ω2r2

r − 2M

]
1

r (r − 2M)
R = 0

(B.3)
We may put R(r) = r−1F (r) and transform to a new coordinate ρ(r) =
r + 2M ln

∣∣ 2M−r
2M

∣∣ to obtain the equation

∂2
ρF (ρ) +

[
m2

r
− l(l + 1)

r3
+

ω2

r − 2M
+

2M

r4

]
(r − 2M)F (ρ) = 0 (B.4)
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The solutions we want are far from the black hole and so we only consider the
solutions as the radial coordinate r → ∞.

∂2
ρF (ρ) +

[
m2 + ω2

]
F (ρ) = 0 (B.5)

The general solution of (B.5) is

F (ρ) = Ae−iαρ + Beiαρ (B.6)

where α2 = m2 + ω2. For the Schwarzschild spacetime, there are two null
coordinates, which we may generalise to

u = t −
[(m

ω

)2

+ 1
] 1

2

ρ (B.7)

v = t +
[(m

ω

)2

+ 1
] 1

2

ρ (B.8)

We may write the field solution in terms of them and thus we have two
complete sets of solutions, one valid in the assymptotic past and one in the
assymptotic future. Thus we have found the ”in” and the ”out” modes of the
scalar field for large times and large distances away from the black hole.

ui = u
(in)
ωln = r−1e−iωvYln (θ, φ) (B.9)

ui = u
(out)
ωln = r−1e−iωuYln (θ, φ) (B.10)

Bearing in mind that the scalar product (A.27) is independant of the
choice of hypersurface, it can be shown that both sets of solutions are indeed
complete sets and may be suitably normalised according to (A.29). We note
that the solution in terms of spherical harmonics has forced both l and n to
be integers such that −l ≤ n ≤ l. There is no restriction upon ω or the range
of values of l. Thus the field may have a continuous range of frequencies and
may exist in all angular momentum states 0 ≤ l < ∞.
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B.2 Computing the Bogolubov Coefficients

”Now you may ask, ’What is mathematics doing in a
physics lecture?’ We have several possible excuses: first,
of course, mathematics is an important tool, but that
would only excuse us for giving the formula in two min-
utes. On the other hand, in theoretical physics we dis-
cover that all our laws can be written in mathematical
form; and that this has a certain simplicity and beauty
about it. So, ultimately, in order to understand nature
it may be necessary to have a deeper understanding of
mathematical relationships. But the real reason is that
the subject is enjoyable, and although we humans cut na-
ture up in different ways, and we have different courses
in different departments, such compartmentalization is
really artificial, and we should take our intellectual plea-
sures where we find them.”

- Richard P. Feynman.

Having computed the assymptotic modes, we must evaluate the Bogolubov
coefficients of the second kind. This is a rather complex integral and may be
simplified if we can expand the null coordinates in terms of each other and
then perform an integral over the complex plane. Consider a collapsing shell
of matter, then outside the shell, we would have the Schwarzschild metric

dl2 = dt′2 − dr2 − r2dΩ2 (B.11)

and inside the shell, the normal Minkowski metric in spherical polar coordi-
nates

dl2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
(B.12)

However the spacetime must have a continuous metric across any boundary
to satisfy a basic philosophical need of a physical spacetime. We may thus
easily derive, that

R − 2M

R

(
dt

dt′

)2

+
[
1 − R

R − 2M

](
dR

dt′

)2

= 1 (B.13)

where r = R(t) must be satisfied. Figure 2.1 shows such a shell at two times
and the null coordinates passing through. By the continuity condition, we
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must thus connect the curved null coordinate v to the flat one v′ which must
be connected to the flat null coordinate u′ and that to its curved equivalent u.
If we then follow the chain of connections in reverse, we may find u = u(v).
As it turns out, because of the forms of the flat null coordinates, all the
connections are just linear except the final one in which we need to make use
of the metric continuity condition (B.13).

v v′ u′ u

shell at t = t0

shell at t = t1

r = 0

Figure 2.1: The null vectors change when they intersect
the collapsing shell. First we have v which changes into
v′ when it intersects the shell at time t0. v′ changes
into u′ when it crosses the origin and then into u as
it crosses the shell at time t1 with t1 > t0, which has
collapsed further in the intervening time.

We define t′0 ≡ t′(R=2M) and so near t′ = t′0 we may put R(t′) ∼ 2M +
a′ (t′0 − t′). Then the continuity condition (B.13) gives

t ∼ −2M ln
(

t′0 − t′

2M

)
(B.14)

which enables us to deduce the form of u

u = u(v) = −4Mα ln
∣∣∣∣v0 − v

2MC

∣∣∣∣ (B.15)
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where C is a constant and

α =
1
2

(
1 +

[(m

ω

)2

+ 1
] 1

2
)

(B.16)

Both modes may now be expressed in terms of the null coordinate v and
we may write the Bogolubov transformation (A.33). By projecting out the
modes in turn, we may easily derive the Bogolubov coefficients

αωω′ln =
1
2π

√
ω′

ω
eiωv0

∞∫
0

e−iω′ṽ exp
[
4Miωα ln

∣∣∣∣ ṽ

2MC

∣∣∣∣] dṽ (B.17)

βωω′ln = − 1
2π

√
ω′

ω
eiωv0

∞∫
0

eiω′ṽ exp
[
4Miωα ln

∣∣∣∣ ṽ

2MC

∣∣∣∣] dṽ (B.18)

where ṽ = v0 − v. We now regard ṽ as a complex variable and do the inte-
grals in the complex plane. Using properties of complex integrals, we may
determine that we can transfer one of the above integrals into the other by a
contour-deformation. For a general function f(ṽ) and constant b [30]∣∣∣∣∣∣

∫
C

e−iω′ṽ exp (bif) dṽ

∣∣∣∣∣∣ = −eb

∣∣∣∣∣∣
∫
C

eiω′ṽ exp (bif) dṽ

∣∣∣∣∣∣ (B.19)

where C is the infinite semi-circle in the upper-half plane. Thus

|αωω′ln| = e4πMωα |βωω′ln| (B.20)

But the Bogolubov coefficients are normalised via∑
ω′

(
|αωω′ln|2 − |βωω′ln|2

)
= 1 (B.21)

and so

Nωln =
∑
ω′

|βωω′ln|2 =
[
e8πMωα − 1

]−1
(B.22)

The particle production spectrum (B.22) is the number of particles of mass
m created by a Schwarzschild black hole of mass M into a mode of angular
frequency ω
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Nω =
[
exp

(ω

T

)
− 1

]−1

(B.23)

we obtain a frequency dependant temperature

T (ω) =
1

4πM

[((m

ω

)2

+ 1
) 1

2

+ 1

]−1

(B.24)

We see that if m = 0, we have a genuine Planck spectrum with a constant
temperature but if the field mass does not vanish, then the spectrum deviates
from the Planck one . The celebrated Hawking effect [17] states that a massless
scalar field is emitted from a Schwarzschild black hole in an exactly Planck
spectrum. When we go back to geometrical units and put in the surface
gravity of the black hole κ = (4M)−1 and consider a massless field, we obtain

T =
κ

2π
(B.25)

which is precisely the Hawking result.

B.3 The Scalar Field in Kerr-Newman Space-
time

”A black hole has no hair.”

- John A. Wheeler.

Now we reconsider the scalar field in the general black hole case. In the
same manner as above, we consider the free Klein-Gordon field equations and
evaluate the d’Alembertian (A.39) for the metric (A.3). When we separate
the variables according to

Φ = e−iωteinφSnω (θ) R (r) (B.26)

We find that the functions Snω (θ) and R (r) satisfy the equations

[
1

sin θ
∂θ (sin θ∂θ) − n2

sin2 θ
− a2ω2 sin2 θ + A

]
Snω (θ) = 0 (B.27)

and

∂r (∆∂rR)+
[
ω2
(
r2 + a2

)2
+ a2n2 + m2Σ∆ − 2anωB − A∆

] R

∆
= 0 (B.28)
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If we put η = cos θ and λω = A − a2ω2 we may transform the angular
equation (B.27) into the standard for for the spheroidal wavefunctions Snω =
Snω (a, cos θ)

[
∂η

[(
1 − η2

)
∂η

]
+ λω − n2

1 − η2
+ a2η2

]
Snω (a, cos θ) = 0 (B.29)

the properties of which may be looked up in [1].
The radial equation will be treated as before. We put R (r) = r−1F (r)

and transform to a coordinate ρ (r) which satisfies

dρ

dr
=

r2 + a2

∆
(B.30)

and then obtain the radial equation

∂2
ρF −

[
2
r
− 2r∆

(r2 + a2)2

]
∂ρF

+

[
2
r2

− 2∆
(r2 + a2)2

+ ω2 +
a2n2 + m2Σ∆ − 2anωB − A∆

(r2 + a2)2

]
F = 0 (B.31)

which in the limit r → ∞ becomes

∂2
ρF (ρ) +

[
m2 + ω2

]
F (ρ) = 0 (B.32)

This is the same assymptotic behaviour in terms of the different coordinate
ρ (r) as before in the Schwarzschild case . So we define our null coordinates
in an annalogous manner to (B.7) and thus get the ”in” and ”out” modes

ui = u
(in)
ωnλ = r−1e−iωvSnω (a, cos θ) (B.33)

ui = u
(out)
ωnλ = r−1e−iωuSnω (a, cos θ) (B.34)

Similarly to the Schwarzschild case, it may be shown that both solutions
independantly form a complete set of solutions according to (A.29). As before,
there is no restriction placed upon the frequency of the field ω.

B.4 Evaluating the Emission Spectrum

”For what one can measure exists.”
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- Max Planck.

Again, we must connect the null coordinates across the boundary of a
collapsing shell to find u ≡ u(v). This time, of course, the shell is rotating
and charged in addition to being massive. The metric within, therefore, takes
the form

dl2 = −
(

1 +
Q2

Σ

)
dt2 +

2Q2a sin θ

Σ
dtdφ +

Σ
r2 + a2 + Q2

dr2

+ Σdθ2 +
(

r2 + a2 − Q2a2 sin2 θ

Σ

)
sin2 θdφ2 (B.35)

Since the horizon is located at rE = M +
√

M2 − a2 − Q2 we may put R(t′) =
rE +A (t′0 − t′) in addition to setting φ (t′) = B, where A and B are constants.
We can then deduce that(

dt

dt′

)2

∼ 4M4

(rE − M)2

(
1

t′0 − t′

)2

(B.36)

which enables us to deduce the form of u analogously to (B.15)

u = u(v) = −4Mα ln
∣∣∣∣v0 − v

CrE

∣∣∣∣ (B.37)

where C is a constant and

α =
1
2

([(m

ω

)2

+ 1
] 1

2

+
M

rE − M

)
(B.38)

The calculations in the complex plane, to find the Bogolubov coefficients,
is the same as in equations (B.17) to (B.22) with α given by (B.38). We may
therefore deduce the emission spectrum to be identical to (B.22) but with the
changed α. The frequency dependant temperature (B.24) is then

T (ω) =
1

4πM

([(m

ω

)2

+ 1
] 1

2

+
M√

M2 − a2 − Q2

)−1

(B.39)

Since the surface gravity of a Kerr-Newmann black hole is given by

κ =

√
M2 − a2 − Q2

2MrE − Q2
(B.40)
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one can see that there does not exist a general version of (B.25). If we put
Q = 0, then we may indeed find that for a massless field

T =
κ

2π
(B.41)

Nevertheless, (B.39) is still a remarkably simple equation for such a compli-
cated object as the Kerr-Newman spacetime.



Appendix C

The Dirac Field in
Kerr-Newman Spacetime

”I consider that I understand an equation when I can
predict the properties of its solutions, without actually
solving it.”

- Paul Adrien Maurice Dirac.

The Dirac equation was originally proposed by P.A.M. Dirac, who devised
it as the relativistic equation for the electron. While the concept of spin
needs to be artificially introduced into non-relativistic quantum mechanics,
the Dirac equation has the spin of the electron built in. The equation looks
like

(iγ̃µ∂µ − m) Φ = 0 (C.1)

where m is the mass of the electron and γ̃µ are the Dirac matrices chosen
such that they satisfy the anticommutation relation

{γ̃µ, γ̃ν} = 2ηµν (C.2)

where ηµν is the Minkowski metric tensor given by (A.2). These are four by
four constant matrices which satisfy many properties based on (C.2). In fact,
many properties of the solution of the Dirac equation may be deduced from
the properties of the Dirac matrices which hinge upon their anti-commutation
relation. Since each Dirac matrix has 16 components, there is a lot of freedom
in choosing the exact values of the matrix components. Each choice is known
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as a representation of the solution of the Dirac equation - a four component
spinor. The most popular such representation, in which most of relativistic
quantum mechanics is done, is defined by

γ̃1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , γ̃2 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 ,

γ̃3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , and γ̃4 =


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

 .

(C.3)

C.1 Tetrads and the Dirac Equation

”As God calculates, so the world is made.”

- Gottfried Wilhelm Leibniz.

The incorporation of spin into curved spacetimes is most readily done via
the Newman-Penrose tetrad formalism. A tetrad is a combination of four
vectors l, n, m and m, where the overline indicates complex conjugation. We
devise a notation for the tetrad ei

(a) in which the index within parenthesis
indicates a label for the vector and the free index the components of the
vectors, so that

ei
(1) = li, ei

(2) = ni, ei
(3) = mi, ei

(4) = mi (C.4)

The tetrad index may the raised and lowered via the metric tensor

e(a)i = gikek
(a) (C.5)

A summation over the tetrad index yields a summation matrix η̃(a)(b) which
is not necessarily numerically equivalent to the Minkowski metric tensor

ei
(a)e(b)i = η̃(a)(b) (C.6)

Via the equations (C.5) and (C.6), we may represent the metric tensor as

gµν = e(a)
µ e(b)

ν η̃(a)(b) (C.7)

If the matrix η̃(a)(b) is numerically equivalent to the Minkowski metric ,
we may verify that the four matrices defined by
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γµ = eµ
(a)γ̃

(a) (C.8)

satisfy the anti-commuation relation

{γµ, γν} = 2gµν (C.9)

which is just the curved spacetime generalisation of (C.2). So the matrices γµ

may be regarded as the curved spacetime Dirac matrices . The Dirac equation
in curved spacetime takes the form [3]

[γµ (∂µ − Γµ) + m] Φ = 0 (C.10)

where γµ are now defined by (C.8) and Γµ, the ”spin-connection” is defined
by

Γµ =
1
2
Σ(α)(β)eν

(α)

[
∂

∂xµ
e(β)ν

]
(C.11)

where Σ(α)(β), the generator of the Lorentz group, is defined by

Σ(α)(β) =
1
4

[
γ(α), γ(β)

]
(C.12)

Sometimes the spin-connection is also defined equivalently as

Γµ =
1
4
g(λ)(α)

[
e
(α)
β

∂

∂xµ
eβ
(ν) − Γ(α)

(ν)µ

]
s(λ)(ν) (C.13)

where s(α)(β) = 2Σ(α)(β) and Γ(α)
(ν)µ are the Christoffel symbols from general

relativity [37].
There are two main choices for the tetrad: the null tetrad and the Minkowski

tetrad . The null tetrad is defined by requiring the four tetrad vectors to be
null and normalised. Thus we get a summation matrix (C.6)

η̃(a)(b) = η̃(a)(b) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 (C.14)

The Minkowski tetrad is defined such that the summation matrix (C.6) is
numerically equivalent to the Minkowski metric

η(a)(b) = η(a)(b) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (C.15)
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This Minkowski tetrad formalism allows us to immediately obtain the curved
spacetime Dirac matrices via (C.8).

In curved spacetime, it is desirable to have a Minkowski tetrad because
of the easy transformation properties of the Dirac matrices from Minkowski
space to curved space. Via knowledge of the spacetime, however it is often
easier to find a null tetrad. Thus it is necessary to know if one may proceed
from one to the other with relative ease. Let us define a matrix α

(a)
(b) such that

α
(a)
(c)α

(b)
(d)η̃(a)(b) = η(c)(d) (C.16)

If α
(a)
(b) is found, we may transform a null tetrad ẽi

(a) into a Minkowski tetrad
ei
(a) via

ei
(a) = α

(b)
(a)ẽ

i
(b) (C.17)

and it may be verified that the new tetrad satisfies the relations (C.5) - (C.7)
with the Minkowski summation matrix. If we define A(a)(f) = α

(a)
(c) η̃

(c)(f), we
may determine that

A2η̃ = η (C.18)

Through much algebra, one may determine A2 and then A by taking the
square root of the matrix, to obtain

A(a)(b) =
1
2


√

2i −√
2i 0 0√

2i
√

2i 0 0
0 0 (1 − i) (1 + i)
0 0 (1 + i) (1 − i)

 (C.19)

and by inverting η̃ we find, from the definition of A

α
(a)
(c) =

1
2


−√

2i
√

2i 0 0√
2i

√
2i 0 0

0 0 − (1 + i) − (1 − i)
0 0 − (1 − i) − (1 + i)

 (C.20)

Thus, having found a null tetrad we multiply it by α
(a)
(c) given by (C.20) to get

the Minkowski tetrad and get the Dirac matrices via (C.8) from the Minkowski
space representation.
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C.2 The Dirac Gamma Matrices and the Spin-
connection
”The Dirac Method of capturing a lion in the
middle of the Sahara Desert: ”We observe that
wild lions are, ipso facto, not observable in the Sahara
Desert. Consequently, if there are any lions in the Sa-
hara, they are tame. The capture of a tame lion may be
left as an exercise for the reader.’”

- unknown.

The reason why it is easier to find a null tetrad is because in addition
to the vectors obeying many requirements, we may use the null geodesics to
construct them. The null geodesics are the lines along which photons travel in
a given spacetime and may be found from the metric [25]. In Kerr-Newman
geometry , the null geodesics may be found to satisfy [8]

dt

dτ
=

r2 + a2

∆
E,

dr

dτ
= ±E,

dθ

dτ
= 0,

dφ

dτ
=

a

∆
E (C.21)

Thus we may choose a set of four vectors based on (C.21) and the requirement
that they be null

l · l = n · n = m · m =m · m = 0 (C.22)

orthogonal

l · m = l·m= n · m = n·m= 0 (C.23)

and normalised

l · n = −m·m= 1 (C.24)

to have a summation matrix given by (C.14). So we obtain the null tetrad for
the Kerr-Newman black hole

ẽi
(a) =



r2 + a2

∆
1 0

a

∆
r2 + a2

2Σ
− ∆

2Σ
0

a

2Σ
ia sin θ√

2ρ
0

1√
2ρ

i csc θ√
2ρ

− ia sin θ√
2ρ

0
1√
2ρ

i csc θ√
2ρ


(C.25)
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where ρ = r + ia cos θ. We transform the null tetrad into a Minkowski tetrad
via (C.17)

ei
(a) =

i

2
√

2Σ


r2 + a2 −∆ 0 a(

r2 + a2
)(2Σ

∆
+ 1

)
2Σ − ∆ 0 a

(
2Σ
∆

+ 1
)

2iap′ sin θ 0 2ip −2p csc θ
2iap sin θ 0 2iap′ 2p′ csc θ


(C.26)

where p = a cos θ + r and p′ = a cos θ − r. From the Minkowski space Dirac
matrices (C.3), we can now determine the Dirac matrices in the Kerr-Newman
geometry via (C.8). We obtain

γ1 =
i

2
√

2Σ


a 0 −∆ r2 + a2

a

(
2Σ
∆

+ 1
)

0 2Σ − ∆
(
r2 + a2

)(2Σ
∆

+ 1
)

−2p csc θ 2ip 0 2iap′ sin θ
2p′ csc θ 2ip′ 0 2iap sin θ

 (C.27)

γ2 =
i

2
√

2Σ


a 0 −∆ − (r2 + a2

)
a

(
2Σ
∆

+ 1
)

0 2Σ − ∆ − (r2 + a2
)(2Σ

∆
+ 1

)
−2p csc θ −2ip 0 −2iap′ sin θ
2p′ csc θ −2ip′ 0 −2iap sin θ


(C.28)

γ3 =
i

2
√

2Σ


0 −a r2 + a2 ∆

0 −a

(
2Σ
∆

+ 1
) (

r2 + a2
)(2Σ

∆
+ 1

)
∆ − 2Σ

2ip 2p csc θ 2iap′ sin θ 0
2ip′ −2p′ csc θ 2iap sin θ 0


(C.29)

γ4 =
−i

2
√

2Σ


r2 + a2 −∆ 0 −a(

r2 + a2
)(2Σ

∆
+ 1

)
2Σ − ∆ 0 −a

(
2Σ
∆

+ 1
)

2iap′ sin θ 0 −2ip 2p csc θ
2iap sin θ 0 −2ip′ −2p′ csc θ


(C.30)

This is, of course, one particular representation of the gamma matrices which
corresponds to the usual representation (C.3) in Minkowski space. It is pos-
sible that there exists a more convinient representation in the Kerr-Newman
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space. The Minkowski tetrad with lowered indices can then be found via (C.5)

e(a)i =
i

2
√

2Σ



−∆ −Σ 0 a∆sin2 θ

−∆ − 2Σ
(

2Σ
∆

− 1
)

Σ 0 (2Σ + ∆) a sin2 θ

2a sin θD 0 2ipΣ
−2a2 sin3 θA (p + ip′)

−2p sin θ
(
r2 + a2

)
2a sin θD′ 0 2ip′Σ

2a2 sin3 θA (p′ − ip)

+2p′ sin θ
(
r2 + a2

)


(C.31)

where D = Ap + i (A − 1) p′ and D′ = i(A − 1)p − Ap′ and we have put
A =

(
2Mr − Q2

)
Σ−1. Throughout this we have assumed that the vector

potential is zero. A non-zero vector potential may always be introduced by
the transformation

∂µ → ∂µ − iAµ (C.32)

where Aµ the vector potential is a solution of the massless Klein-Gordon
equation. If we are to ignore the vector potential, we must set the charge
of the black hole to zero and thus change the geometry from Kerr-Newman
to the Kerr geometry. This will not cause much simplification in the Dirac
matrices but it gets rid of the vector potential, for which no exact solution
exists in the Kerr-Newman geometry, see section 2.3.

We may now calculate the spin connections Γµ via (C.11) and thus write
down the Dirac equation. The Γµ turn out to be very long expressions upon
evaluation and we do not stand a chance of separating the Dirac equation in
this form. Thus we must resort to a different method.

C.3 Separation and Reduction of the Dirac Equa-
tions
”Thus the partial differential equation entered theoretical
physics as a handmaid, but has gradually become the
mistress.”

- Albert Einstein.

Instead of explicitly evaluating the gamma matrices and spin-connections,
let us work with them symbolically and use their properties to achieve the
separation of the Dirac equation into four separate differential equations for
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the four components of the Dirac spinor. Consider the full Dirac spinor as
being composed to two two-component spinors PA and QA representing the
particle and anti-particle respectively. We then introduce a new basis for the
spinor space ζA

a and for the conjugate space ζA′
a′ following the formalism of

Newman and Penrose [26] more formally. Everywhere in the spacetime, there
exists a null tetrad associated with the spinor space basis.

One defines a Ricci rotation coefficient or spin coefficient γ(a)(b)(c) via the
following relationship with the null tetrad.

γ(c)(a)(b) = ek
(c)∇k

(
e(a)i

)
ei
(b) (C.33)

If we consider the basis vectors as directional derivatives, as done so often in
general relativity, one may show that the Dirac equation may be reduced to
the set of four coupled differential equations [9](

∂00′ +
1
2

(γ211 + γ341) − γ314

)
P 0+(

∂01′ + γ241 − 1
2

(γ214 + γ344)
)

P 1 = i
m√
2
Q

1′
(C.34)

(
∂11′ + γ243 − 1

2
(γ212 + γ342)

)
P 1+(

∂01′ +
1
2

(γ213 + γ343) − γ312

)
P 0 = −i

m√
2
Q

0′
(C.35)

(
∂00′ +

1
2

(γ211 + γ341) − γ314

)
Q

0′
−(

∂01′ + γ241 −
1
2

(γ214 + γ344)
)

Q
1′

= −i
m√
2
P 1 (C.36)

(
∂00′ +

1
2

(γ211 + γ341) − γ314

)
Q

1′
+(

∂01′ + γ241 −
1
2

(γ214 + γ344)
)

Q
0′

= i
m√
2
Q

1′
(C.37)

Using the null tetrad for the Kerr geometry (C.25) and the spin coefficients
tabulated in [35], it can be shown that these equations are separable when a
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time dependance of exp i (σt + mφ) is assumed for all components of the full
Dirac spinor. We thus have the solution

Ψ = ei(σt+mφ)



S− 1
2
R− 1

2√
2 (r − ia cos θ)

S 1
2
R 1

2

−S 1
2
R− 1

2√
2 (r + ia cos θ)

S− 1
2
R 1

2


(C.38)

where the functions R− 1
2

and S− 1
2

satisfy the second order linear ordinary
differential equations

∂2
θS− 1

2
+ Q (θ) ∂θS− 1

2
+ R (θ)S− 1

2
= 0 (C.39)

and
∂2

rR− 1
2

+ F (r) ∂rR− 1
2

+ P (θ)R− 1
2

= 0 (C.40)

with the coefficient functions given by

Q (θ) = tan θ +
1
2

cot θ − aσ sin θ + m csc θ (C.41)

R (θ) = a2m2 cos2 θ +
1
2
− aσ + m

cos θ
+

m cos θ − 1
2

sin2 θ
(C.42)

F (r) = i

[
K

∆
− m

λ + imr

]
(C.43)

P (r) =
mK − (λ − imr) (λ + imr)2

∆(λ + imr)
− 2i (r − M) K

∆2
(C.44)

with
K =

(
r2 + a2

)
σ + am (C.45)

The relationship between the two radial functions R± 1
2

may be shown to be(
∂r +

iK

∆

)
R− 1

2
= (λ + imr) R 1

2
(C.46)

Thus we may solve the Dirac equation in Kerr space completely if solutions to
the two linear ODE’s (C.39) and (C.40) may be found. A complete analytic
solution in terms of known functions is not possible but a numerical solution
is of course much easier after this separation than it would have been to solve
the full coupled partial differential equations that we were faced with initially.
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C.4 Assymptotic Solutions

”That queer quantity ’infinity’ is the very mischief, and
no rational physicist should have anything to do with it.
Perhaps that is why mathematicians represent it by a
sign like a love-knot.”

- Sir Arthur Stanley Eddington.

The solutions to the angular equation do not concern us here, so we will
simply assume that it is possible to find a suitably normalised set of orthonor-
mal mode solutions to it. So consider the radial equation in the limit r → ∞.
Instead of solving it directly by force consider defining two new functions φ± 1

2
by

∆
1
2 R 1

2
= φ 1

2
exp

(
− i

2
tan−1

(mr

λ

))
(C.47)

and

R− 1
2

= φ− 1
2

exp
(

i

2
tan−1

(mr

λ

))
(C.48)

which we can use to construct a wave equation in the new tortoise coordinate

ρ(r) = ρ(r) +
1
2σ

tan−1
(mr

λ

)
(C.49)

where ρ(r) is the usual tortoise coordinate in Kerr space (B.30). The new
wave equation thus sums up the radial solutions to the Dirac equation(

d2

dρ2 + σ2

)
Z± = V±Z± (C.50)

where Z± = φ 1
2
± φ− 1

2
and the potential is given by

V± =
∆

1
2 U

3
2

[
∆

1
2 U

3
2 ± (

(r − M)U + 3m2r∆
)]

[(
r2 + a2 +

am

σ

)
U +

λm∆
2σ

]2

∓
∆

3
2 U

5
2

[
2rU + 2m2r

(
r2 + a2 +

am

σ

)
+

λm(r − M)
σ

]
[(

r2 + a2 +
am

σ

)
U +

λm∆
2σ

]3

(C.51)

where U = λ2 + m2r2. It may be shown that the potential satisfies

lim
r→∞V± = m2 (C.52)
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This enables to find two complete sets of solutions for φ 1
2

and thus the
radial functions{

φ 1
2

}
= A exp (iβρ)

{
φ 1

2

}
= B exp (−iβρ) (C.53)

where β2 = σ2 − m2. Note the significant difference in the constant β to the
solution of similar form to (B.34) for the scalar field in section 2.3.

C.5 The Emission Spectrum

”Although Bekenstein’s hypothesis that black holes have
a finite entropy requires for its consistency that black
holes should radiate thermally, at first it seems a com-
plete miracle that the detailed quantum-mechanical cal-
culations of particle creation should give rise to emis-
sion with a thermal spectrum. The explanation is that
the emitted particles tunnel out of the black hole from
a region of which an external observer has no knowl-
edge other than its mass, angular momentum and elec-
tric charge. This means that all combinations or config-
urations of emitted particles that have the same energy,
angular momentum and electric charge are equally prob-
able. Indeed, it is possible that the black hole could emit
a television set or the works of Proust in 10 leather-
bound volumes ...”

- Stephen W. Hawking.

Making use of the earlier null coordinate connections, we may thus imme-
diately deduce that the emission spectrum of the Dirac field has a temperature

T (ω) =
1

4πM

[√
1 −

(m

ω

)2

+
M

r+ − M

]−1

(C.54)

We observe an essential deviation from the scalar case which takes the form
of the minus sign in front of the square of the electron mass. We recall
from special relativity (valid in the limit r → ∞ which we have taken) that
E2 = p2 + m2 and thus ω2 > m2, so it is impossible for the temperature to
take complex values in spite of the minus sign. Furthermore, we have gained
the emission spectrum of the neutrino field for free since it is equivalent to a
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massless Dirac field with less helicity states. Since these do not matter here,
we may simply deduce that the emission spectrum for a massless neutrino is

T =
1

4πM

[
1 − M

r+

]
(C.55)

Taking into consideration the recent results from neutrino observations [11],
we should probably not make this distinction and say that (C.54) holds for
the neutrino also in which the mass is not quite clear yet but should be around
0.4 electronvolts.

Since the Dirac equation in this form holds for any spin 1/2 particle, we
have derived this not only for an electron or a neutrino but any particle with
spin 1/2. We see that the temperature is greatest for the particle with m = 0
due to the minus sign. Thus the emission probability is highest for massless
fermions, while the opposite is true of scalars.

C.6 The Electromagnetic Field

”It does not follow that because something can be counted
it therefore should be counted.”

- Harold L. Enarson.

The electromagnetic field is described by Maxwell’s equations which, in
general relativity, are recast into a tensor formalism in which the object of
interest is the Faraday tensor Fab which is a combination of the components
of the electric field E and the magnetic field B, such that

Fab =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 (C.56)

and Maxwell’s equation may be shown to reduce to two tensor equations in
F

∇aFbc + ∇bFca + ∇cFab = 0; a 
= b 
= c (C.57)

and

∇bFab = ja (C.58)

where ja = (ρ, j) is the four-current. In curved spacetime, the covariant
derivatives are complicated differential operators like the d’Alembertian (A.39)
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and thus these equations are rather complex. We must separate all these
equations and then solve them for the field components in order to be able
to derive the emission spectrum. Fortunately, Chandrasekhar has done this
for a zero external electric field and we just need to take his solution that
assymptotically (r → ∞) the electric and magnetic fields vary with a charac-
teristic scalar which varies just as the Dirac field varies. The derivation of
this result is very complex and the reader is referred to Chandrasekhar [8] for
a discussion of it. Since the solution is for a zero external field, we must work
with the connection of the null coordinates for Kerr spacetime and thus the
result is exactly the same as for the massless Dirac field, i.e. the neutrino.
Thus we find that the emission temperature for a photon is

T =
1

4πM

[
1 − M

r+

]
(C.59)



Appendix D

The Binary System

”Space is the essential basis for the appearance of phys-
ical structures.”

- Tarthang Tulku.

From observations, we know that often black holes are not far enough
apart from other stars so that we may neglect the influence of the stars upon
the black holes. Some of the best candidates for black holes are members
of a binary system in which the partner is certainly important. We wish to
study how the inclusion of several black holes might change the scalar emission
spectrum. We shall find that even though we will treat the situation for two
black holes, the derivation is general for any number of black holes, provided
that they form a finite cluster and the observer is far away compared to the
distances between the black holes.

D.1 The Metric

”There is nothing in the world except curved empty
space. Geometry bent one way here describes gravita-
tion. Rippled another way somewhere else it manifests
all the qualities of an electromagnetic wave. Excited
at still another place, the magic material that is space
shows itself as a particle. There is nothing that is for-
eign and ’physical’ immersed in space. Everything that
is, is constructed out of geometry.”

- John A. Wheeler.
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An explicit solution for the metric of two black holes may be found [20]

dl2 = −f−1γmndxmdxn + f (ωmdxm + dt)2 (D.1)

where

f =

∣∣∣∣∣1 +
N∑

i=1

Mi

Ri

∣∣∣∣∣
2

(D.2)

and
γmn = diag

[
1, r2, r2 sin2 θ

]
(D.3)

This result holds for N black holes with masses Mi. When N = 2 and the
positions of the black holes are (0, 0, b1) and (0, 0,−b2) with b1, b2 > 0, then

R2
j = r2 − 2 (bj + iaj) r cos θ + (bj + iaj)

2 (D.4)

It may be shown [20], that we may require the following properties of the ω’s

ωr = ωθ = 0; lim
r→∞ωφ = 0 (D.5)

and we may easily see from (D.2) that

lim
r→∞ f = 1 (D.6)

The function ωφ may be evaluated explicitly [20] but we shall only need to
make use of its assymptotic limit.

We then find the metric tensor, its determinant and its inverse from the
(D.1) - (D.4) to be

gµν =


f 0 0 fωφ

0 −f−1 0 0

0 0 −r2

f
0

fωφ 0 0 fω2
φ − r2 sin2 θ

f

 (D.7)

g ≡ det (gµν) = −r4f−2 sin2 θ (D.8)

gµν =


f−1 − fω2

φ

r2 sin2 θ
0 0

fω2
φ

r2 sin2 θ
− f−1

0 −f 0 0

0 0 − f

r2
0

fω2
φ

r2 sin2 θ
− f−1 0 0 − f

r2 sin2 θ


(D.9)
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Using (D.7) - (D.9) we may use (A.39) to find the d’Alembertian operator
in this spacetime

�2Φ =

(
f−1 − fω2

φ

r2 sin2 θ

)
∂2

t Φ + 2

(
fω2

φ

r2 sin2 θ
− f−1

)
∂t∂φΦ

− f

r2 sin2 θ
∂2

φΦ − f

r2
∂r

(
r2∂rΦ

)− f

r2 sin θ
∂θ (sin θ∂θΦ)

(D.10)

D.2 The Scalar Field

”It is the theory that decides what we can observe.”

- Albert Einstein.

The Klein-Gordon equation (A.38) where �2 is given by (D.10) is satisfied
by the wavefunction

Φ = exp (−iωt)Yln(θ, φ)R(r) (D.11)

where Yln(θ, φ) are the spherical harmonics and the radial wavefunction R(r)
satisfies the equation

∂2
rR +

2
f

∂rR − (
2ωn + ω2

)( ω2
φ

r2 sin2 θ
− f−2

)
R

+
[

n2

r2 sin2 θ
+

m2

f
− l(l + 1)

]
R = 0 (D.12)

If we transfer to a tortoise coordinate

ρ(r) =
r2 +

∑
i

a2
i

r2 −∑
i

(2Miai − a2
i − Q2

i )
(D.13)

we may simplify (D.12) in the limit as r → ∞ to the equation

∂2
ρR (ρ) + α2R (ρ) = 0 (D.14)

where α2 = 2ωn + ω2 + m2 − l(l + 1). If we take our null coordinates to be

u = t − α

ω
ρ v = t +

α

ω
ρ (D.15)
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we have the two solutions as before in terms of the two null vectors

ui = u
(in)
ωln = e−iωvYln (θ, φ) (D.16)

ui = u
(out)
ωln = e−iωuYln (θ, φ) (D.17)

It may be shown, analogously to the derivation in section 2.1 for the single
Schwarzschild black hole , that these solutions are orthogonal and can be
properly normalised with repect to the conditions (A.29). For this, it is vital to
remember that the scalar product is independant of the choice of hypersurface.

D.3 The Emission Spectrum

”According to ’Turner’s Law,’ the invocation of the tooth
fairy should not occur more than once in any scientific
argument.”

- Marcia Bartusiak.

When dealing with one black hole , we obtained scalar modes of the same
form as the present modes. It was found that if we could find one null co-
ordinate in terms of the other one, we could find the Bogolubov coefficients
without actually having to do a very complicated integral. We were able to
use a different contour in the complex plane to transform one integral into
a multiple of the other and then, via the normalisation condition, find the
Bogolubov coefficient. If we want to apply the same method here, we must
find u = u(v). Two isolated black holes can not be treated as two separate
collapsing shells of matter since then, the emission spectrum would depend on
which exact path the null coordinates took; that is if they intersected both or
only one black hole. There is no simple local way of determining the connec-
tion. Since we are only interested what an observer at infinity sees, we may
treat the cluster accordingly. When the observer is far away from the black
hole cluster, a number of black holes act as one with the sum of the properties
(Gauss’ Theorem) [21]

M =
∑

i

Mi a =
1
M

∑
i

|Ji| Q =
∑

i

Qi (D.18)

Thus we may in fact use the same connection procedure as before with the
new parameters given by (D.18). We then have

u(v) = −4Mγ ln
[
v0 − v

Cr+

]
(D.19)
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where

γ =
1
2

[
α

ω
+

M

r+ − M

]
(D.20)

We now employ the same method as in section 2.2 to find the temperature
of the emission spectrum. Since the form of (D.19) is identical to the form of
(B.37), we may use the result for the temperature from (B.39) and thus have

T (ω) =
1

4πM

[
α

ω
+

M√
M2 − a2 − Q2

]−1

(D.21)

in terms of the parameters given by (D.18). Note that the emission spectrum
depends upon the angular quantum numbers l and n of the field as well as the
angular frequency ω and the mass of the scalar m. The emission temperature
is the same for any number N of black holes, such that N ¿ 1. That it depends
upon the angular quantum numbers is a new effect and will lead to structure
in the emission spectrum. To find the total emited number of scalars with a
particular frequency, we must sum over the modes that have this frequency.

N tot
ω =

∞∑
l=0

l∑
n=−l

[
exp

(ω

T

)
− 1

]−1

(D.22)

The sum over n is limited by the properties of the spherical harmonics but the
sum over l is not limited as it would be in the hydrogen atom, for example.
This sum must be evaluated numerically.
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Interacting Fields

”Physics doesn’t have to have any use. It just is.”

- Robert A. Heinlein.

So far we have only considered free fields. Measurements however, can only
be made if the field interacts with either itself or another field because if no
interactions are present, for all practical purposes, the field does not exist. We
have been able to make several very interesting predictions based upon the free
field treatment and we expect this to be the major contribution to the particle
production. It is interesting to study what the effect of interactions would be
upon the field emission spectrum from a black hole. In the following sections
we shall consider the interaction of the scalar field with the gravitational field
and itself.

E.1 The Gravitational Interaction

”If A is success in life, then A equals x plus y plus z.
Work is x; y is play and z is keeping your mouth shut.”

- Albert Einstein.

The interaction of any field with the gravitational one is treated through
the introduction of an extra term in the Lagrangian density for the field

Lint = −1
2
ξRΦ2 (E.1)
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where R is the Ricci scalar defined in terms of the Riemann tensor (A.11)

R = gαβRγ
βγα (E.2)

Upon invoking the action principle, we would get an extra term ξRΦ in the
field equations. In the case of the Klein-Gordon equation, we could thus regard
the gravitational field interaction as introducting a position dependant mass
of the field

(m′)2 = m2 + ξR (E.3)

From experience, two values of ξ are particularly important. The mini-
mally coupled case, ξ = ξm = 0, and the conformally coupled case,

ξ = ξc =
n − 2

4(n − 1)
(E.4)

where n is the number of dimensions of the spacetime [13]. In the case of
normal general relativity, we have n = 4 and so ξc = 1/6. Many models
of black holes are done in two dimensions since the separation of the field
equations is so much easier, in this case ξc = ξm = 0. The conformally
coupled case is named so because if m = 0 and ξ is given by (E.4), then the
field equation will be invariant under conformal transformations of the metric,
i.e.

gµν (xµ) −→ Ω2 (xµ) gµν (xµ) (E.5)

By (A.12), we may determine that for any black hole spacetime

lim
r→∞R = 0 (E.6)

This property allows us to deduce that when any wave-equation is derived
from its Lagrangian combined with the interaction Lagrangian (E.1), we will
get an assympotic equation which does not depend upon ξ. Thus, since we
are only concerned with the region in which the radial coordinate tends to
infinity, the gravitational interaction has no effect upon the emission of any
type of particle. Taking the limit to infinity is not strictly permissable since
an observer is never an infinite distance away from anything observable. Thus
we should of course do the entire solution for a finite radial coordinate r. The
complication is that none of the differential equations would then be soluble
and thus the endeavour would be a numerical one. If the system is sufficiently
well behaved, we may postulate that the result derived for r → ∞ holds to a
good order of approximation when the observer is at a distance r � rE , the
event horizon of the black hole.
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E.2 The Self Interaction
”A theory, to be of any real use to us, must satisfy two
tests. In the first place, it must not make use of any
ideas which are not confirmed by experiment. Special
assumptions must not be dragged in merely to meet some
particular difficulty. In the second place, the theory must
not only explain all the facts known already, but must
also enable us to forsee other facts which were not known
before and can be tested by further experiment.”

- Max Born.

Like the gravitational interaction , the interaction of a field with itself is
treated through an new term in the lagrangian density

Lself = −1
4
λΦ4 (E.7)

Upon applying the action principle, this Lagrangian introduces the term λΦ3

into the field equations. This nonlinearity will complicate matters greatly
since we must now solve a nonlinear partial differential equation instead of
a linear one. This means that in general the variables may no longer be
separated and we can not adopt the solution methods of the previous chapters.
When the coupling constant λ is small, we may be able to find a solution using
asymptotic methods and then discuss the solution in the phase plane of the
differential equation. This will not help us very much in the endeavour to
calculate the Bogolubov coefficients, however.

What we may be able to do is to introduce another variable into the partial
differential equation to transform it into an ordinary differential equation
(ODE) which may be soluble. The resultant ODE will, of course, still be
nonlinear to the third degree but at least we may adopt the usual methods of
solving ODE’s to search for a solution. Because of the complexity, we shall
study only the Klein-Gordon field with this interaction.

E.3 The Scalar Field
”Mathematics alone satisfies the mind through absolute
certainty.”

- Johnnes Kepler.

The Klein-Gordon equation in the presence of non-zero self interaction
becomes
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(
�2 + m2

)
Φ + λΦ3 = 0 (E.8)

Since the variables in this equation can not be separated, we immediately
transform to the tortoise coordinate ρ given by (B.30) and take the limit
r → ∞ to obtain the equation(

∂2
ρ − ∂2

t + m2
)
Φ + λΦ3 = 0 (E.9)

We may transform this into an ODE by transforming to the variable s = t±µρ
to get

(
µ2 − 1

) d2Φ
ds2

+ m2Φ + λΦ3 = 0 (E.10)

which may be put into a more standard form

d2Φ
ds2

+ w2Φ + βΦ3 = 0 (E.11)

The ODE (E.11) possess soliton solutions ([29] and [18]) which may how-
ever be shown not to be orthogonal or normalisable according to the condi-
tions (A.29). These soliton solutions may be of use when dealing with the
self-interacting scalar field under different conditions. For instance if a so-
lution describing one particular particle were sought, these soliton solutions
would be perfect. For our purposes, we must search for a complete solution
of the equation and extract solutions which are properly normalisable and
orthogonal. A first integral of (E.11) may be found by standard methods

(Φ′)2 + w2Φ2 +
β

2
Φ4 = C1 (E.12)

where C1 is a constant. This first order ODE may be discussed in the phase
plane [34]. The phase plane analysis shows many properties of the solutions
and would be a good tool to find characteristics of the field in different cir-
cumstances. To find the emission spectrum, we need an explicit solution,
however. Rearranging, the solution may be expressed as an integral

s + C2 = ±
√−2

β

∫ Φ [
Φ4 +

2w2

β
Φ2 − 2C1

β

]− 1
2

dΦ (E.13)

E.4 Elliptic Solutions

”Your calculations are correct, but your physics is abom-
inable.”
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- Albert Einstein.

To evaluate (E.13), we put C1 = w4

2β

(
D2 − 1

)
and use the properties of

the Jacobi elliptic functions (for a tabulation see [1] and for a discussion see
[6]), we may find that

s + C2 = ±
√−2

β

∫
dΦ

[(
Φ2 − w2

β
(D − 1)

)(
Φ2 +

w2

β
(D + 1)

)]− 1
2

(E.14)

= ± i

w
√

D
cn−1

[
w
√

D − 1√
βΦ

,

√
D + 1
2D

]
(E.15)

Inverting this solution, we obtain the complete solution for the field in terms
of the two arbitrary constants C2 and D.

Φ = w

√
D − 1

β
cn

[
±w

√
D (s + C2) ,

√
D − 1
2D

]
(E.16)

To put this into a more convinient form, put F =
√

D−1
2D . Then we

must find two sets of solutions for Φ such that they obey the orthonormality
conditions (A.29). Directly this will not be possible since the solution (E.16)
is a real function. Even if we are able to find two complete sets of modes, they
will not satisfy the original conditions since they will be real. To remedy this
difficulty, we must reconsider the first assumptions in being able to expand
one set of solutions in terms of the other. We had

ui =
∑

j

(
α∗

jiūj − βjiū
∗
j

)
(E.17)

but since the solutions are real, the Bogolubov coefficients must be real and
we now have

ui =
∑

j

(αji − βji) ūj (E.18)

=
∑

j

εjiūj (E.19)

We may now find that the emission spectrum is given by

Ni =
∑

j

|βji|2 =
1
4

∑
j

ε2
ji (E.20)
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Thus we need not throw away our solution (E.16) but we may determine
the emission spectrum in spite of the fact that the solution is real. This
also implies that our field solution only needs to satisfy one orthonormality
condition,

(ui, uj) = δij (E.21)

instead of three. Using the properties of the Jacobi elliptic functions, it can be
shown that for the solutions to be properly normalised the constant F must
be chosen such that

−4w2

β (1 − 2F 2)

[
2E

(π

2
, F
)
− 2

(
1 − F 2

)
K
(π

2
, F
)]

= 1 (E.22)

where E
(

π
2 , F

)
and K

(
π
2 , F

)
are the Jacobi elliptic integrals of the first and

second kind defined by

E
(π

2
, F
)

=

π/2∫
0

dθ√
1 − F 2 sin2 θ

(E.23)

K
(π

2
, F
)

=

π/2∫
0

√
1 − F 2 sin2 θdθ (E.24)

The Jacobi elliptic function cn(x, F ) behaves as the cosine function with the
period K = E

(
π
2 , F

)
. Using this property, we may infer that cn(x, F ) is

orthogonal just like the cosine function. This fact may in fact be demonstrated
numerically and thus we have

2K∫
−2K

ΦwΦw′ds = δww′ (E.25)

for the choice C2 = 0 and D being fixed by the normalisation requirement
(E.22). In order for the solutions to be fully orthonormal like the cosine
function, we must require, in addition to (E.22), that the coefficient of the
independant variable ω

√
D = ω/

√
1 − 2F 2 is an integer. We have chosen F

already and thus we must impose the condition that ω can only take certain
values given by

ω = p
√

1 − 2F 2 (E.26)

where p is a positive integer or zero. We note that since the variable s has
two possibilities built into it, we already have two complete sets of solutions
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to the nonlinear Klein-Gordon field which are suitably normalised. We may
thus identify the two null coordinates as the two possibilities for s and put

u = t −
(

m2

ω2
+ 1

) 1
2

ρ, v = t +
(

m2

ω2
+ 1

) 1
2

ρ (E.27)

where we have chosen the separation constant µ =
√

m2/ω2 + 1 as we had
before. The null coordinate u may be found as a function of v by the method
discussed in section 2.4. Thus we may evaluate the single Bogolubov coeffi-
cient

εωω′ =

2K∫
−2K

ΦωΦω′dρ (E.28)

and the emission spectrum is then

Nω =
∑
ω′

εωω′dω′ (E.29)

Both (E.28) and (E.29) must be evaluated numerically for a specific black
hole. Without evaluating either explicitly, we may already argue that the
spectrum will be significantly altered since the solution (E.16) will not reduce
to our previous solution upon letting the self-coupling constant λ → 0. This
is a currious property of the solution but one which occurs frequently in the
solutions of differential equations. On physical grounds, we must expect a
small deviation from the previous emission spectrum but on mathematical
grounds, there is no reason for this to be so. The main difference is, of course,
the ”quantisation” of the field frequency.



Appendix F

Physical Discussion

”Physics does not explain the secrects of nature, it leads
to deeper secrets.”

- Carl Friedrich von Weizäcker.

In the preceeding chapters, we have derived the emission spectra of a
variety of particles by black holes. Amongst all this mathematical derivation
of the results we have not discussed the meaning of the results obtained in
detail and have not given the emission spectra in normal SI units. In this
section 1, we shall give all of this information and compare and contrast the
main features of the emission spectra for a various types of particles. Section
2 will discuss the famous information paradox which concerns the possible
conservation (or otherwise) of information in the light of the results gained
in this paper. Section 3 sets the paper in context of present research and
suggests several ways in which the work began here could be carried on to
produce meaningful new physics.

F.1 Comparison of Spectra

”Indeed, modern theoretical physics is constantly filling
the vacuum with so many contraptions that it is amazing
a person can even see the stars on a clear night”

- M.J.G. Veltman.

All the mathematics in this paper so far has been done in geometrised
units in which the speed of light in the vacuum c, the gravitational constant G,
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Boltzman’s constant k, the permittivity of the vacuum ε0 and the permeability
of the vacuum µ0 are all equal to one. Furthermore, we represented the mass
of the particle by the inverse of its Compton wavelength, so m = h̄m0/c where
m0 is the rest mass of the particle. The values of the constants used below
are given in table 6.1. The transition from geometricised units into SI may
be accomplished via the transformations listed in table 6.2.

Table 6.1: SI Values of Constants

Constant Value Units
c 2.9979 · 1010 cm s−1

G 6.6700 · 10−8 cm2 g−1 s−2

k 1.3805 · 10−23 J K−1

h̄ 1.0545 · 10−34 J s
q 1.6020 · 10−19 J eV−1

ε0 8.8542 · 10−12 C V−1 m−1

h̄c3

4πkG 2.4553 · 1026 g K
q/h̄ 1.5194 · 1015 eV−1 s−1

G/ε0 7.5331 · 1012 cm6 s−4 C−2

h̄/k 7.6378 · 10−12 s K

Table 6.2: Transformation of Units

Geometric Variable SI Variable
M GM/c2

a a/c

Q
√

G/ε0c4Q
m m/qch̄
ω ω/c

Making use of these transformation properties of the variables and param-
eters of the emission spectra, we may express the number of particles emitted
into the mode of angular frequency ω by

Nω =
[
exp

(
h̄ω

kT

)
− 1

]−1

(F.1)

where in general T = T (ω). The exact temperatures for all the various fields
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can then be collected together into two formulae

T (ω) =
h̄c3

4πkGM

[√
1 +

2nc

ω
− c2l(l + 1)

ω2
+
(qm

h̄ω

)2

+
GM√

G2M2 − GQ2/ε0 − c2a2

]−1

(F.2)
and

T (ω) =
h̄c3

4πkGM

[√
1 −

(qm

h̄ω

)2

+
GM√

G2M2 − c2a2

]−1

(F.3)

where the units of the variables are

[M ] = g, [a] = cm2s−1, [Q] = C, [m] = eV, [ω] = Hz (F.4)

Table 6.3 shows the particles to which these formulae apply and any special
settings of the parameters required.

Table 6.3: Temperature Identification

Particle Geometry Temperature Parameter Requirements
scalar Schwarzschild (F.2) a = Q = n = l = 0
neutral scalar Kerr-Newman (F.2) n = l = 0
neutral scalar Cluster (F.2) none
electron Kerr (F.3) none
neutrino Kerr (F.3) m = 0
photon Kerr (F.3) m = 0

From tables 6.1 to 6.3, we may now calculate the emission temperature
in degrees Kelvin for almost all known particles. It is remarkable that one
should be able to reduce all the different field solutions for different situations
to two very similar equations for the emission temperature.

We note the magnitude of the temperature first of all. For a minimum
size black hole of three solar masses, the scalar emission temperature is of the
order of 10−10 Kelvin. Such a low temperature will cause hardly any emission
at all. For an emission temperature equal to room temperature, a black hole
of 2 · 10−12 solar masses is necessary. Such a mini black hole could only have
been formed at the time of the big bang and would be evaporating around
this time in the universal evolution.

For a single Kerr black hole, the only difference between the two emission
temperatures is a change of sign before the square of the particle mass. It is
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obvious that as the frequency becomes large, the temperatures tend to the
same value. At low frequencies, it is the Dirac emission which dominates
however.

When the charge and angular momentum of a Kerr-Newman black hole
are small, the temperature approaches that of the Schwarzschild solution.
When they are large, all that is changed is that the limit of the temperature
as the frequency becomes large, decreases. It may thus be deduced that the
Schwarzschild solution has the largest emission temperature.
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Figure 6.1: The emission temperature for electron emis-
sion from a Kerr black hole of three solar masses. The
red, blue, green and black curves correspond to values
of the angular momentum per unit mass a = 0, 0.5M ,
0.75M and 0.95M , in geometrical units, respectively.

For a cluster of black holes, the temperature depends upon the angular
quantum numbers l and n which are chosen such that −l < n < l. For
any reasonable choice of l, we may thus see that the value of n dominates.
The limit as the frequency becomes large is the same for all different angular
modes. For finite frequencies, the temperature is decreased with increasing
quantum numbers. We would expect this since it should be harder to emit a
particle in a high state than a low state. It can however be verified numerically,
that the temperature is a very weak function of the angular quantum numbers,
so that for conservative choices of l and n, we may regard them as neglegible
parameters.
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Since the temperatures depend on so many parameters, it is difficult to
illustrate these points graphically. In one figure 6.1, we compare the tem-
peratures for electron emission from a Kerr black hole for various values of
the angular momentum for a black hole at the Chandrasekhar limit (a mass
of three solar masses). The red, blue, green and black curves correspond
to values of the angular momentum per unit mass a = 0, 0.5 · M , 0.75 · M
and 0.95 · M , in geometrical units, respectively. Figure 6.2 shows the emis-
sion number for three scalar particles from a mini Schwarzschild black hole of
mass M = 5.97 · 1013 grams. The red, blue and green curves correspond to
the neutral pion, neutral kaon and eta respectively.

We see that there is little variation with changing angular momentum
until we get close to the extremal case, where a = M . In this limit, the
emission temperature tends to zero. We also observe that the emission of
lighter particles is prefered. This is intuitive but it is good that this is brought
out in the mathematics.
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Figure 6.2: Emission spectrum for three scalars from a
Schwarzschild black hole of mass M = 5.97 ·1013 grams.
The red, blue and green curves correspond to the neutral
pion, neutral kaon and eta respectively. The masses are
π0 = 135 MeV, κ0 = 498 MeV and η = 549 MeV.
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F.2 Observability of Black Hole Evaporation

The emission of particles from a black hole may be observable if the emission is
frequent enough so that many particles would arrive at a telescope on earth.
From the general form of the emission law (F.1), we note that this occurs
when

h̄ω ≈ kT (F.5)

We see that certain modes of emission are thus preferred over others. In such
a way, one may, for a certain black hole, determine the ’favorite’ emission
mode for a certain field.

When the mass of the particle is small compared to the frequency of the
field, the temperature is approximately constant and we observe a Planck
spectrum. How then might we distinguish a black hole emission spectrum
from any other Planck spectrum such as the microwave background radiation?
We take the example of the binary neutron star system PSR 1913+16 wherein
the slowing down of the rotational motion due to gravitational radiation was
measured to a greater accuracy than any result in QED. If it were possible to
observe several small black holes and measure their mass, charge and angular
momentum with very high accuracy, one may be able to see the reduction
of these parameters with time due to particle emission. If one were to look
directly at a black hole and measure its spectrum, one would probably not be
able to observe a significant signal because of radiation due to other objects.

By looking at the temperatures, we note that the emission of particles
becomes stronger the smaller the black hole and that it will not stop until
the black hole has fully evaporated. We may not actually use our results to
predict the final disappearance of the black hole since we are dealing with the
approximation that we may treat gravity classically. This assumption is only
true when the curvature, as measured by the Ricci scalar, is small compared to
the wavelength of the quantum field. When a black hole becomes arbitrarily
small, this assumption no longer holds. Because this is an approximation,
we may expect it to be the dominant behaviour of the process and so we
can reasonably expect that the black hole will actually finally disappear, even
though we can not say for certain until a full quantum theory of gravity is
available.

There has been a proposal that after the big bang, when the matter was
very dense, mini black hole could have formed with masses down to the Planck
mass. Such black holes would now be close to the final evaporation point and
radiating vigorously. It has been conjectured that the emission of particles
during the final few seconds would be powerful enough to compete with a
supernova for luminosity. Such an event would thus certainly be observable.

The likelihood of there being any such mini black holes is not determined
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but there would need to be a great number of different masses in order for
astronomers to have reasonable chances of picking up such explosions. The
lack of such observations points towards a dearth of mini black holes created
in the big bang. This is the first concrete physical deduction that we can draw
from the theory and experiment combined.

Since we did not have to assume that we are dealing with an actual black
hole, this effect would also exist for any object with a metric of the Kerr-
Newman type, which is any stellar object. Since these are generally massive
and sparse, the number of emitted particles will be low and thus the effect is
neglegible.

F.3 The Information Paradox

”Every proposition can be viewed from two points of
view, a scientific and a sensible one.”

- A. Bier.

Every system carries information in it. A single particle has position and
momentum, thus six pieces of independant information. Also the particle has
a mass, charge, spin and possible other quantum numbers that distinguish it
from other particles. All this is the information content of the particle. In
a complex system, such as a star, there is much more information. When
such a star collapses into a black hole, all this information is lost along with
all the matter. However the black hole is described only by its mass, angular
momentum and charge in addition to its position and linear momentum. Since
the black hole is characterised by so few parameters, so is the metric and thus
the emission spectrum for a quantum field. This in turn means that little
information leaks out of the black hole. If the black hole ever evaporated
completely, where does this information remain?

There are a number of easy answers to this question. First, information
is not conserved and thus the question is irrelevant; the information simply
disappears. Second, black holes do not completely evaporate and thus the
information remains within. Third, the black hole singularity forms a gateway
to another part of the universe or to another universe altogether through which
the information leaks. Let us then discuss each of these possible answers.

Philosophically, one would like information to be conserved. This is a con-
sequence of the second law of thermodynamics which states that the entropy
of a closed system, such as the universe, either stays constant or increases.
We may identify the concept of entropy with information and thus deduce
that the information content of the universe must either remain constant or
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increase over time. According to the law of simplicity or Ockham’s razor, we
then postulate conservation of information which would limit the change of
universal entropy to zero. Even a general second law would speak against
the first explanation of the paradox since information has apparently sharply
decreased.

The second explanation presumes the second law and attempts to uphold
it by requiring a full theory of quantum gravity to stop the emission process
when a black hole approaches the Planck mass. This would provide us with
another achievement for free: An explanation for the cosmic censor. Penrose
showed that naked singularities make a spacetime unphysical but also showed
that singularities are inevitable [16]. Thus he conjectured that a cosmic censor
exists that masks naked singularities. A quantum gravitational plug on the
Hawking effect is the perfect mechanism to ensure that such censorship is
carried out. This would even explain the current null result on observed black
hole explosions.

The third explanation also assumes the second law. Now we enforce it
by emitting the information through either a white hole in another universe
(for example region II in figure 1.1) or an Einstein-Rosen bridge to another
part of this universe. This would allow black hole to fully evaporate and still
maintain the second law. The cosmic censor would be unhappy, but we may
find another way of preventing that.

It seems that the second explanation is a very good one. It upholds what
we know without introducing anything too much like startrek at the expense
of a new physical effect from a theory as yet undiscovered. This may be
too much of a price to pay. From our derivations, it would seem that black
holes would evaporate fully and there is no hint at what may stop this from
occuring. Furthermore, our deductions should be the first order calculations
to the emission but we have said that this does not hold for Planck sized
black holes. It would thus seem perfectly reasonable to require that quantum
gravity prevent the emission of particles from small black holes.

F.4 Directions in the Future

”Science really starts to get interesting when it stops.”

- Freiherr Justus von Liebig.

Constrained by time, we have not been able to exhaust the topic of Hawk-
ing radiation by far. Much could be done and there is cause to attempt to
do some of these things in the future. Let me name a few problems not yet
solved for motivation of future research.
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We have considered only the gravitational interaction for all fields and
the self interaction for the scalar field. Interacting fields are much different
from free ones and one may deduce far more from them. It would increase our
knowledge of quantum fields in curved spacetimes by a great deal if interacting
fields could be studied in detail. All fields are simultaneously present around
a black hole and that must cause some additional effects.

The effect of the reduction in mass will have an effect upon the metric of
the black hole. This back reaction effect becomes important for small black
holes and may be another source for new physics. We have made no attempt
at including this very difficult topic into our deductions here. Treating this
topic in detail would require much time but good results would come of it.

The solutions presented here have relied on assymptotic approximations.
When the distance of the observer to the black hole can not be assumed to be
infinity, the emission spectrum will no longer be Planck. It is possible that the
limit of this new spectrum tends to the Planck one so slowly that the spectrum
as seen is in no way like the spectrum we have derived. Unfortunately, the
differential equations can not be solved exactly for a finite radial coordinate
and thus this solution must be done numerically.

On a more formal level, an investigation into the properties of the Bo-
golubov coefficients and emission spectrum based upon general properties of
the metric tensor would be very revealing. A general investigation of particle
emission by curvature would reveal that this effect is not limited to black holes
but merely easier to observe because the curvature is greater near the event
horizon than anywhere else.

Research into quantum fiel theory in curved spacetimes is necessary to
obtain a more complete picture of fundamental influences of gravity upon
quantum events. It also allows us to approximate quantum gravity with-
out ever having it. Having concrete and verifiable physical predictions from
QFTCS will make the hunt for quantum gravity easier since it must reduce
to it in the small curvature limit.
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